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Abstract

The diagnostic work-up of patients suspected for myelodysplastic syndromes is chal-

lenging and mainly relies on bone marrow morphology and cytogenetics. In this

study, we developed and prospectively validated a fully computational tool for flow

cytometry diagnostics in suspected-MDS. The computational diagnostic workflow

consists of methods for pre-processing flow cytometry data, followed by a cell popu-

lation detection method (FlowSOM) and a machine learning classifier (Random For-

est). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and

93% specificity in an independent validation cohort. For practical advantages

(e.g., reduced processing time and costs), a second computational diagnostic

workflow was trained, solely based on the best performing single tube of the training

cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospec-

tive validation cohort. Both workflows outperformed the conventional, expert ana-

lyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and

time investment (less than 2 min per patient).
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1 | INTRODUCTION

Myelodysplastic syndromes (MDS) are a group of malignant hemato-

logical disorders characterized by cytopenia, bone marrow dysplasia

and a heterogeneous disease course [1]. In the 2016 World Health

Organization (WHO) classification of myeloid malignancies, dis-

tinguishing MDS from reactive causes of cytopenia and dysplasia is

described as “one of the biggest challenges” [2]. Currently, both bone

marrow morphology and cytogenetics are mandatory in the diagnostic

work-up, however, these measurements do often not suffice for a

conclusive diagnosis. Cytopenic patients with normal cytogenetics

and borderline dysplastic bone marrow features provide the main

challenge, and additional measurements or watch full waiting are fre-

quently required [3, 4].

Immunophenotypic assessment of bone marrow cells by flow

cytometry (FC) has shown to be instrumental to discriminate MDS

from non-neoplastic cytopenias [5]. MDS bone marrow frequently has

an altered cell subset composition and hematopoietic cells expressYvan Saeys and Arjan A. van de Loosdrecht contributed equally to this work.
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aberrant levels of cells surface markers. Several diagnostic FC scores

have been developed, that combine assessment of progenitor b-cells

and myeloid progenitor percentages with evaluation of aberrant cell

surface marker expression on myeloid and erythroid cell populations

[6–10]. Despite their proven utility, FC scores may be improved in

terms of accuracy, objectivity, and required time-investment.

In recent years, several machine learning based tools for cell pop-

ulation detection in (flow) cytometry data have been developed [11].

These tools use clustering methods to group cells with similar expres-

sion patterns and thereby, allow for computational identification of

cell populations. One of the best performing methods is the algorithm

FlowSOM, that has a high reproducibility and concordance with man-

ual analysis combined with a limited running time [12, 13]. In this

study, we developed a computational workflow for MDS diagnosis,

combining FlowSOM and a machine learning classifier [13–15].

Thereby, we aimed to improve accuracy, objectivity and ease of use

of flow cytometry based MDS diagnostics. In addition, using these

data driven unbiased approach, we investigated which cellular proper-

ties matter most to diagnose patients suspected for myelodysplastic

syndromes.

2 | MATERIALS AND METHODS

2.1 | Patients

We included 230 patients, grouped into the following categories:

MDS patients, patients with a non-neoplastic cytopenia and age-

matched controls (non-cytopenic, no hematological disease); age-

matched controls and patients with a non-neoplastic cytopenia are

further referred to as controls. All patients were subjected to a full

diagnostic work-up for MDS at the Amsterdam UMC, location

VUmc. Patients without clinical follow-up data and insufficient

bone-marrow samples were excluded. Diagnosis was established

based on clinical characteristics at diagnosis and follow-up,

cytomorphology, cytogenetics, pathology and biochemical indica-

tors. In case FC results were used to establish diagnosis, a

hemato(patho)logist reevaluated all other diagnostic parameters to

assess whether MDS diagnosis could be confirmed without includ-

ing FC results.

The total cohort consists of cases used to develop the computa-

tional workflow, further referred to as the training cohort, and cases

used to prospectively validate the computational workflow, further

referred to as the validation cohort. To develop a diagnostic workflow

focused on the most difficult to diagnose MDS patients, only MDS

patients without excess of blasts (EB) were included in the training

cohort (n = 67). The training cohort consisted of patients (n = 148)

included between March 2013 and August 2017, the prospective vali-

dation cohort consisted of patients (n = 57) included between

September 2017 and August 2018. We included an additional valida-

tion cohort with MDS EB patients (n = 25) to evaluate diagnostic per-

formance in this MDS subgroup. Table 1 summarizes the

characteristics of the patients in the training and validation cohorts.

The study was approved by the Medical Ethics Committee of VU Uni-

versity Medical Center, Amsterdam, the Netherlands.

2.2 | Sample handling

All bone marrow samples were pre-processed and analyzed within

24 h according to European Leukemia Net guidelines [5]. Bone mar-

row samples were collected in heparin and erythrocyte lysis was per-

formed with ammonium chloride-based lysing solution. The staining

panel consisted of six 8-color FC tubes and is outlined in more detail

in Table S1. For every tube at least 100.000 leukocyte events were

acquired using a FACS CantoII™ (BD Biosciences). FC equipment set-

tings were generated in a highly standardized fashion, following guide-

lines of Euroflow [16]. Standard operating procedures were followed

to assess FC data, including standardized flow cytometer set up, per-

formance checks and generation of compensation settings (for details

on these general laboratory procedures we refer to Cloos et al. [17]).

Expert analysis of MFC data were performed following ELN guidelines

for two diagnostic MDS FC scores, the Ogata score and the integrated

flow cytometry score (iFS) [7, 10]. Sample handling and analysis of

flow cytometry standard (fcs) files was previously described in more

detail by Cremers et al. and Alhan et al. [10, 18].

2.3 | Computational diagnostic workflow:
Preprocessing, computational cell population
detection and classification for disease status

First, we optimized fcs files for computational analysis in fully auto-

mated fashion. High quality events were selected using the R package

FlowAI, the FlowAI package evaluates flow rate abnormalities, out of

dynamic range expression signals and parameter stability [15]. In total,

0.1% to 26.3% (median of 2.0%) cells were removed by FlowAI per

tube, in over 90% of all tubes less than 5% of cells were removed.

Subsequently, cells with extreme values in scatter parameter and dou-

blets were excluded using the R package FlowCore [19] (Text S1).

After the FlowAI check, singlet selection and scatter outlier removal,

all fcs files harbored at least 40.000 cells. In order to optimize data

distribution and range for computational analysis, hyperbolic arcsine

transformation with a cofactor of 150 and approximated min-max

scaling per parameter were applied (Text S2).

In the next stage of the computational diagnostic workflow, we

applied FlowSOM—an algorithm for cell population detection in cyto-

metry data—to the fcs files of the training cohort. FlowSOM groups

cells with similar expression patterns into nodes and subsequently

groups nodes with similar expression patterns in metaclusters that

resemble larger cell populations. The number of nodes was set to

225 clusters (grid size of 15 � 15) and the number of metaclusters

to 30. Per file 40.000 cells were included in an aggregate for the

FlowSOM analysis. Subsequently, all cells were mapped on

the FlowSOM to compute metacluster percentages, mean fluorescent

intensity (MFI) and coefficient of variation (CV) per file. To validate
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TABLE 1 Patient characteristics of
the training and validation cohorts

A. Patient characteristics training cohort

Control (n = 81) MDS (n = 67)

Age (median) 64 (19–91) 71 (21–94)

Sex (m/f) 43/38 50/17

Diagnoses Deficiencies/blood loss (n = 18) WHO MDS-SLD (n = 2)

Immune mediated cytopenia (n = 14) MDS-RS-SLD (n = 6)

Spontaneous recovery (n = 19) MDS-MLD (n = 32)

Drug induced (n = 4) MDS-RS-SLD (n = 17)

Alcohol intoxication (n = 4) MDS-U (n = 7)

BM Infiltration solid tumor (n = 1) Isolated del5q (n = 3)

Hemolytic anemia (n = 1) IPSS-R Very low (n = 13)

Cyclic neutropenia (n = 4) Low (n = 29)

Other (n = 4) Intermediate (n = 13)

Healthy donors (n = 12)a High (n = 5)

Very high (n = 2)

Insufficient data (n = 5)

B. Patient characteristics validation cohort

Control (n = 27) MDS (n = 30)

Age (median) 71 (43–88) 66 (34–78)

Sex (m/f) 15/12 18/12

Diagnoses Deficiencies/blood loss (n = 5) WHO MDS-SLD (n = 3)

Immune-mediated cytopenia (n = 4) MDS-RS-SLD (n = 1)

Spontaneous recovery (n = 3) MDS-MLD (n = 16)

Drug induced (n = 2) MDS-RS-MLD (n = 6)

Alcohol intoxication (n = 1) MDS-U (n = 1)

Splenomegaly (n = 1) Isolated del5q (n = 3)

Chronic neutropenia(n = 3) IPSS-R Very low (n = 3)

Healthy donors (n = 8)a Low (n = 17)

Intermediate (n = 3)

High (n = 3)

Very high (n = 0)

Insufficient data (n = 4)

C. Patient characteristics validation cohort MDS with excess of blasts

MDS (n = 25)

Age (median) 72 (51–82)

Sex (m/f) 20-mei

Diagnosesa WHO MDS-EB 1 (n = 11)

MDS-EB 2 (n = 14)

IPSS-R Intermediate (n = 10)

High (n = 6)

Very high (n = 8)

Insufficient data (n = 1)

Abbreviations: del5q, with an isolated deletion of 5q; EB, excess of blasts; IPSS-R, Revised International

Prognostic Scoring System; MDS, myelodysplastic syndrome; MLD, multi lineage dysplasia; RS, ring

sideroblasts; SLD, single lineage dysplasia; U, undefined; WHO, World Health Organization

Classification 2016.
aHealthy controls were age-matched non-cytopenic volunteers without a hematological disease.
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performance of the FlowSOMmethod, we studied the expression pat-

terns of the computationally identified cell populations using conven-

tional expert analysis by sequential gating in bivariate plots. In

addition, we evaluated concordance with expert analysis by compar-

ing abundancy of several cell subsets (lymphocytes, myeloid progeni-

tors, neutrophils, erythroid cells, plasmacytoid dendritic cells and

basophils) identified by expert analysis and FlowSOM. Finally, we

mapped fcs files annotated with expert identified cell populations on

the FlowSOM models and the Jaccard index was calculated to evalu-

ate concordance.

For the diagnostic workflow, the following cellular features were

extracted from the clusters and metaclusters of the FlowSOM analysis

per patients: abundance relative to the total number of cells, mean

fluorescence intensity (MFI) per parameter and coefficient of variation

(CV) per parameter.

Based on the features extracted from the computationally identi-

fied cell populations, we trained three machine-learning classifiers to

distinguish MDS patients from controls: a Random Forest classifier

[14], a Support Vector Machine (SVM) classifier [20], and Generalized

Linear Mixed models [21]. To evaluate whether feature selection

improved model performance, we performed feature selection using

the top 200 and top 50 variables identified by minimum redundancy

maximum relevance (MRMR) importance measures and the highest

values of the Gini index derived from RF [22, 23]. We used standard

settings for SVM, glmnet and RF, except for the number of trees in RF

algorithm (10.000).

2.4 | Optimization and evaluation of the
computational diagnostic workflow in the training
cohort

To select the best features from the FlowSOM analysis and the best

performing machine learning classifier, we performed five-fold cross

validation in the training cohort. An overview of the explored options

is summarized in Table 2. For the initial optimization and evaluation of

the computational workflow, we used all six tubes of the FC panel.

Subsequently, we aimed to identify the best performing single tube,

as a single tube approach would be advantages with regard to anti-

body costs and processing time. Hereto, we trained the computational

workflow based on all tubes separately and evaluated diagnostic

accuracy.

We assessed performance using receiver operating characteristic

(ROC) curve analysis, the area under the curve (AUC), sensitivity and

specificity. Clinical diagnosis, established as described above, was

used as reference standard. Accuracy and practical aspects of both

computational diagnostic workflows were compared with two manu-

ally analyzed diagnostic FC scores, the iFS and the Ogata score. Prac-

tical aspects included the required amount of antibodies and bone

marrow cells, and time required for analysis. For the iFS and the Ogata

score, time required for analysis was measured 10 times for two expe-

rienced technicians.

Currently used expert analyzed FC scores are less sensitive in

MDS cases without specific morphologic or cytogenetic aberrancies

and in low risk disease. Therefore, we evaluated performance in MDS

with or without ring-sideroblasts, MDS with or without cytogenetic

aberrancies in the combined cohorts and in revised international prog-

nostic scoring system (IPSS-R) defined risk groups.

2.5 | Identification of the most relevant features
in the training cohort

To gain insight in the diagnostic workflows, the top 50 and top

10 most important features for discriminating between MDS patients

and controls were identified based on the highest values of the Gini

index derived from RF [22]—the Gini index reflects the contribution

of a feature to the accuracy of the RF analysis. Subsequently, we stud-

ied what type of features (i.e., scatter parameters, fluorescent parame-

ters or abundancy) were present in the top 50 most relevant features.

For the top 10 features, we performed an additional validation step:

the top 10 features were reanalyzed manually in all files of the train-

ing cohort, correlated with the computationally identified features

and compared between MDS patients and controls.

TABLE 2 Basic workflow and optional adaptations

Required approaches Optional adaptations

Stage 1.
Preprocessing

and quality

control

Quality control

(FlowAI) [15]

Doublet removal

Removal of extreme

values in light

scatters

Hyperbolic arcsine

transformation

Approximated min-

max scaling

Stage 2. Feature
extraction

Unsupervised

clustering on cell

level (FlowSOM)

[13]

Features derived

from metaclusters

versus features

derived from

clusters and

metaclusters
Feature extraction

per case

Stage 3.
Classification

Classification for

disease status by

machine learning

Number of features,

all versus 200

versus 50

Classification by RF

[14] versus SVM

[33] versus GLM

[21]

Note: For each stage, the basic workflow consisted of fixed approaches

and optional adaptations. The fixed approaches were not evaluated for

superior performance, the optional adaptations were evaluated for

superior performance to develop the optimal computational workflow.

Abbreviations: GLM, generalized linear mixed models; MRMR, minimum

redundancy maximum relevance; RF, random forest; SVM, support vector

machine.
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2.6 | Prospective validation of diagnostic accuracy
and most relevant features

To prospectively validate diagnostic accuracy, we trained the single-

tube and six-tube workflows using all cases of the training cohort.

Subsequently, raw fcs files of the validation cohort were

preprocessed, mapped on the FlowSOM and classified as control or

MDS based on the RF trained on the training cohort cases.

Sensitivity and specificity were calculated as described for the

training cohort. In an additional validation step, we compared the

most relevant features—identified in the training cohort—with

the same features in the validation cohort.

3 | RESULTS

3.1 | Computationally identified and expert
analyzed cell populations show a high concordance

To evaluate performance of FlowSOM in the training cohort, we

assessed cell populations identified by FlowSOM for marker expres-

sion and examined bivariate expression plots (Figures S1 and S2).

Based on these assessments, we concluded that FlowSOM identified

major cell subsets including neutrophils, monocytes, progenitor cells

(myeloid, erythroid and lymphoid), basophils and plasmacytoid den-

dritic cells. In addition, several cell populations with unfamiliar expres-

sion patterns were encountered (e.g., CD36+/CD71�/CD105+ cells,

and CD36+/CD71+/side scatter high). Subsequently, we compared

abundancy of cell populations identified by FlowSOM and cell

populations identified by expert analysis. Computational and expert

analysis showed a high concordance ( Table S2, Figure S3).

3.2 | The computational diagnostic workflows
outperform currently used FC scores

In the training cohort, we selected the best performing computational

workflow based on diagnostic accuracy (AUC, sensitivity and specificity)

in the five-fold cross validation. The best performing workflow is visual-

ized in Figure 1, and consists of FlowSOM metacluster features and the

machine learning classifier Random Forest without prior feature selec-

tion (Table 3). The workflow based on all six-tubes of the FCM panel,

reached a sensitivity and specificity of 90% and 96%, respectively, and

an AUC of 0.969 (CI 0.945–0.993) (Table 3). Subsequently, we evalu-

ated which single tube reached the highest diagnostic accuracy. Tube

3, developed to assess erythroid dysplasia, obtained the highest diag-

nostic accuracy, reaching a sensitivity and specificity of 85% and 95%,

respectively, with an AUC of 0.964 (CI 0.937–0.991) (Table 2)

(Table S3). We assessed accuracy of both the six-tube and the single-

tube workflow in several MDS subgroups (i.e., MDS with or without ring

sideroblasts and MDS with or without cytogenetic aberrancies, revised

international prognostic scoring system (IPSS-R) subgroups), as diagnos-

tic accuracy of traditional flow cytometry score may vary between these

groups. We found negligible differences in accuracy between these

groups for both the single-tube and six-tube workflows (Table S4). In

the second validation cohort concerning MDS patients with EB, a sensi-

tivity of 100% was obtained.

In a next step, we compared the accuracy of both workflows with

two expert analyzed flow cytometry scores: the Ogata score and the iFS.

Compared to the iFS, the six tubes workflow had a significantly improved

specificity (p = 0.013) and the single tube showed a trend towards an

increased specificity (p= 0.077). Both workflows showed a trend towards

improved sensitivity (six tubes p = 0.064 and single tube p = 0.078).

Compared with the Ogata score, both computational workflows had a

significantly improved sensitivity (six tubes and single tube p < 0.001). In

addition, the six tubes workflow showed a trend towards improved speci-

ficity (six-tube p= 0.070 and single tube p= 0.27).

With regard to the practical aspects of the computational

workflows, total analysis time was reduced from a median of 60 min

(range: 45–90 min) for the iFS approach and 10 min (range: 8–15 min)

for the Ogata score, to less than 3 min for the six-tubes computational

diagnostic workflow and less than 30 seconds for the single-tube

computational diagnostic workflow. Introduction of the single-tube-

computational diagnostic workflow in the diagnostic work-up of MDS

would reduce antibodies and bone-marrow cells needed with 86%

compared with the iFS.

3.3 | Evaluation of the cellular characteristics most
relevant for diagnosis

In order to give insight into the cellular features contributing most to

the accuracy of the computational diagnostic workflows, we identified

the top fifty and top 10 features with the highest discriminative power

based on the Random Forest-derived variable importance measure

based on the Gini index for both the six-tube and the single-tube

workflow (Table S5, Table 4) [22]. Fifty percent of the top 50 features

of the single-tube and six-tube workflow concerned scatter parame-

ters, 45% fluorescence parameters and 5% abundancy parameters.

Subsequently, we evaluated whether the top 50 parameters are

included in currently used diagnostic flow cytometry scores—iFS,

FCSS, Ogata score, Red score. This was the case for 29% of all top

50 features (Table S5).

As a validation step, we identified the top 10 most discriminative

cellular features by re-analyzing all fcs files manually to evaluate concor-

dance with computational analysis. All manually analyzed features corre-

lated significantly with the computationally identified features, and

differed significantly between MDS patients and controls (Table S6).

Computationally identified erythroid and myeloid progenitors proved

to be most relevant for diagnosis, as these cell populations harbored the

most discriminative features (Table 4). Increased side scatter of erythroid

cells in the poly- and orthochromatic stage (CD36+/CD71+/CD105-/

CD117-/CD34-) was the most discriminative feature to separate patients

with MDS from controls. Remarkably, in the six-tubes workflow, three

features derived from tube four, five and six, reflected a relatively high

side scatter in MDS derived from a cell population that could represent a

DUETZ ET AL. 5



similar cell type. In order to evaluate whether these features reflected a

similar cellular characteristic, correlations between these features were

calculated using the Spearman's rank correlation coefficient (two-tailed);

all features showed a strong and significant correlation (rho 0.69–0.96,

p < 0.0001). Notably, this particular erythroid cell population also har-

bored the 4th and 10th most discriminative feature from the single tube

workflow; the CV of CD71 and CD36, which were both increased in

MDS patients (Figure 2). As an increased SSC of erythroid cells was not

previously identified as relevant parameter in MDS-FC, we evaluated this

feature in several MDS subgroups (i.e., low and high risk disease, with or

without cytogenetic aberrancies and with or without ring sideroblasts).

We found an increase in all MDS groups as compared with controls, yet

most pronounced in patients with ring sideroblasts. In MDS patients, the

side scatter of erythroid cells correlated significantly with the percentage

F IGURE 1 Flowchart of the computational diagnostic workflow. All three stages of the computational diagnostic workflow are visualized in
the flowchart. In Stage 1, fcs files were preprocessed to ensure high quality data required for computational analysis. In Stage 2, unsupervised
clustering was performed on cell level by the FlowSOM algorithm to automatically identify cell types and generate features per case. FlowSOM
grouped cells in clusters, represented by the nodes in the depicted FlowSOM tree, and subsequently, grouped the clusters into metaclusters,
indicated by the background coloring. Per case the following features were extracted from the FlowSOM analysis: metacluster abundancy, mean
fluorescence intensity (MFI) and coefficient of variation (CV) for all parameters of the metaclusters. In Stage 3 of the best performing workflow,
these features were supplied to the classification algorithm random forest (RF) to differentiate MDS from controls. Support vector machine (SVM)
and Lasso and Elastic-Net Regularized Generalized Linear Models (GLM) were also evaluated in a five-fold cross validation, however, they were
outperformed by RF. *fcs = flow cytometry standard, MFI = mean fluorescence intensity, CV = coefficient of variation, SVM = support vector
machine, GLM = Lasso and Elastic-Net Regularized Generalized Linear Models, MDS = myelodysplastic syndromes
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of ring sideroblasts side scatter (rho 0.53, p < 0.001) and hemoglobin

levels (rho�0.33, p= 0.01) (Figure 2C).

The third most discriminative feature of the six-tube workflow

and the second in the single-tube workflow was the median CD117

expression on a cell population with immature erythroid blast-like

marker expression (CD36+/CD71+/CD117+/CD105+/CD34+),

that was relatively low in MDS. The seventh most discriminative fea-

ture of the six-tube workflow was a low CD117 expression in MDS

on similar erythroid-like cells derived from tube six. This feature was

significantly correlated with the feature derived from tube three (rho

0.815, p < 0.001), indicating once more that these features were likely

derived from similar cell subsets. Notably, this cell population was

characterized by a granulocyte-like side scatter (both in MDS and con-

trols) which has not been described for erythroid cells in literature

before. Further analysis and cytomorphology of the sorted population

indicated that this subset with high side scatter was an artifact

induced by our ammonium-chloride based erythrocyte lysing method

(data not shown). In order to ensure that the workflow did not depend

on this artificially-induced population, we recalculated sensitivity and

specificity when excluding this cell population from classification. The

changes in accuracy were negligible (Table S7).

Two discriminative features were not derived from myeloid or

erythroid cell populations; the side scatter of HLA-DR negative lym-

phocytes and the forward scatter on HLA-DR positive lymphocytes.

Both features were increased in patients with myelodysplastic syn-

dromes compared with controls.

3.4 | Diagnostic accuracy and most relevant
cellular features were confirmed in an independent
prospective validation cohort

Finally, we validated performance of both workflows in the indepen-

dent prospective validation cohort. In the validation cohort, perfor-

mance for the six-tubes computational diagnostic workflows

resulted in 90% sensitivity and 93% specificity, and for the single-

tube computational diagnostic workflow 97% and 95%, respectively

(Table 3).

As an additional validation step, we studied the most discrimina-

tive cellular features of the training cohort in the validation cohort.

Cellular features of MDS patients of the training cohort were similar

in 16 out of 20 features in the validation cohort, in controls these fea-

tures were similar in all cases (p > 0.05) (Figure S4). Interestingly, the

four features that were significantly different between MDS patients

in the training cohort and the validation cohort were even more dis-

criminative from controls in the validation cohort compared with the

training cohort. Eighteen out of 20 cellular features that were identi-

fied as discriminative between MDS and controls in the training

cohort, differed significantly between MDS and controls in the valida-

tion cohort (p < 0.05) as well.

4 | DISCUSSION

The diagnostic work-up in suspected MDS is challenging and heavily

relies on morphology and cytogenetics. In this study, we developed a

computational diagnostic workflow for flow cytometry to aid in dis-

tinguishing myelodysplastic syndromes from non-neoplastic

cytopenias. By combining algorithms for pre-processing (FlowAI), fea-

ture generation (FlowSOM) and classification (Random Forest), we

established a completely automated and accurate diagnostic tool.

We first optimized and evaluated the computational workflow

based on six tubes of the FC panel, reaching a sensitivity and specific-

ity of 90% and 93%, respectively, in the validation cohort concerning

MDS patients without EB and controls. Subsequently, we identified

the best performing single tube, as a single-tube approach has practi-

cal advantages with regard to processing time and materials required.

In the prospective validation cohort, the single tube workflow

obtained a 97% sensitivity and 95% specificity. Thereby, the computa-

tional workflows showed (a trend towards) significantly increased

accuracies compared with expert analyzed flow cytometry scores

(i.e., the Ogata score and the integrated flow cytometry score). In a

second validation cohort concerning MDS patients with EB a sensitiv-

ity of a 100% was obtained for both workflows, illustrating high diag-

nostic accuracy across all MDS subtypes. In addition, analysis time for

the computational workflows was less than 3 min and implementation

TABLE 3 Comparison of performance of expert flow cytometry scores and the computational diagnostic workflows

Expert scores Computational diagnostic workflow

Ogata score iFS Six tubes Single tube

Training cohort SVMa GLMa RF RF

Sensitivity 69% 81% 94% 85% 90% 85%

Specificity 89% 86% 89% 93% 96% 95%

AUC - - 0.96 (CI 0.93–0.99) 0.90 (CI 0.85–0.95) 0.97 (CI 0.95–0.99) 0.96 (CI 0.94–0.99)

Validation cohort

Sensitivity 67% 80% a- a- 90% 97%

Specificity 89% 85% a- a- 93% 95%

Abbreviations: GLM, lasso and elastic-net regularized generalized linear models; iFS, integrated flow score; RF, random forest; SVM, support vector

machine.
aAccuracies of SVM and GLM with optimized feature selection (50 features for SVM selected by MRMR, all features for GLM).
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of the single-tube workflow will reduce monoclonal antibody usage

with 86% compared with the iFS score. Based on the high accuracies

and practical advantages, we suggest to focus further studies on the

single tube approach.

As diagnostic FC scores, in particular the Ogata score, have shown

to be less sensitive in cases without specific morphologic or cytoge-

netic aberrancies and in low risk disease, we compared accuracy of the

diagnostic workflows in these subgroups [7, 10]. We did not find rele-

vant differences in accuracy between these and other MDS cases

without excess of blasts, which implies that this method is useful in

the most difficult to diagnose MDS patients. Note, the number of

patients in the subgroups were small which may limit the analysis.

The improved accuracy compared with traditional MDS FC scores

may partially be explained by the application of novel computational

TABLE 4 Identification of the cellular features most relevant for diagnosis

Six-tube

Populations Parameter (in MDS) Relative marker expression based on marker enrichment modeling (MEM) Tube

1. Erythroid progenitors SSC Mean (high) CD71+ CD36+, CD105�, CD117�, CD33�, CD45�, FSC-A�, SSC-A�,

HLA-DR�, CD34�
3

2. Erythroid progenitors SSC mean (high) CD71+ CD235a+, CD45� FSC-A� SSC-A� HLA-DR� CD7� CD13� CD34 � 6

3. Lysis artifact CD117 MFI (low) CD105+, CD71+, CD117+, CD36+, SSC-A+, FSC-A+, HLA-DR�, CD34�,

CD33�, CD45�
3

4. Lymphocytes SSC Mean (high) CD45+, CD117�, CD13� FSC-A�, CD11b�, SSC-A�, CD34�, HLA-DR�, CD16�,

CD10�,

1

5. Progenitor FSC mean (high) HLA-DR+, CD34+, CD117+/�, FSC-A+/�, SSC-A�, CD64�, CD45+/� CD2�,

IREM2�
2

6. Erythroid** SSC mean (high) CD15�, FSC-A�, HLA-DR�, CD45�, SSC-A�, CD25�, CD123�, CD38�, CD34�,

CD117�
5

7. Lysis artifact CD117 MFI (low) CD71+, CD117+, SSC-A+, CD7�, CD34�, CD13�, FSC-A+, HLA-DR�,

CD235a�, CD45�
6

8. Lymphocytes FSC mean (high) HLA-DR+ CD45+/�, CD64�, SSC-A�, FSC-A�, CD2�, CD34�, CD117�,

IREM2�
2

9. Myeloid Progenitor HLA-DR CV (low) CD34+, CD117+, HLA-DR+, CD33+/�, CD71�, FSC-A+/�, CD36�, CD105�,

SSC-A�, CD45�
3

10. Erythroid** SSC mean (high) SSC-A�, CD45�, FSC-A�, HLA-DR�, CD5�, CD56�, CD7�, CD34�, CD117�,

CD19�
4

Single-tube

Populations Parameter (in MDS) Relative marker expression based on marker enrichment modeling (MEM) Tube

1. Erythroid progenitor SSC Mean (high) CD71+, CD36+, CD105�, CD117�, CD33�, CD45�, FSC-A, SSC-A, HLA-DR�,

CD34�
3

2. Lysis artifact CD117 MFI (low) CD105+, CD71+, CD117+, CD36+, SSC-A, FSC-A+/�, HLA-DR�, CD34�,

CD33�, CD45�
3

3. Early erythroid progenitor FSC-A mean (high) CD105+, CD71+, CD117+, CD36+, FSC-A�, HLA-DR+, CD33�, SSC-A�,

CD34�, CD45�
3

4. Erythroid progenitor CD71 CV (high) CD71+, CD36+, CD105�, CD117�, CD33�, CD45�, FSC-A�, SSC-A�, HLA-

DR�, CD34�
3

5. Early erythroid progenitor FSC-A mean (high) CD117+, CD105+, CD36+, CD71+, FSC-A+, HLA-DR+, CD34+, CD33�, SSC-

A�, CD45�
3

6. Myeloid progenitor HLA-DR CV (low) CD34+, CD117+, HLA-DR+, CD33+/�, CD71-, FSC-A+/�, CD36�, CD105�,

SSC-A�, CD45+/�
3

7. Myeloid progenitor HLA-DR CV (low) HLA-DR+, CD34+, CD117+, CD71�, CD36�, CD105�, CD33�, FSC-A�, SSC-

A�, CD45�
3

8. Progenitor SSC mean (high) CD34+, HLA-DR+/�, CD117+/�, CD105� CD71�, SSC-A�, CD33�, CD45+/�,

FSC-A�, CD36�
3

9. Myeloid progenitor SSC Mean (high) HLA-DR+, CD34+, CD117+, CD71�, CD36�, CD105�, CD33�, FSC-A�, SSC-

A�, CD45�
3

10. Erythroid progenitor CD36 CV (high) CD71+, CD36+, CD105� CD117�, CD33�, CD45�, FSC-A�, SSC-A�, HLA-

DR�, CD34�
3

Abbreviations: CV, coefficient of variation; FSC, forward light scatter; SSC, sideward light scatter.

**Features derived from the same erythroid cell population.
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analysis methods for FC data. Computational tools, such as FlowSOM,

are not hampered by upfront knowledge or assumptions and can there-

fore be applied to approach FC data in an unbiased fashion. This advan-

tage has up till now mainly been used to detect novel cell (sub)

populations in flow and mass cytometry data [24]. However, in this study

we showed that it can also be a valuable approach to increase diagnostic

accuracy by detecting novel features with discriminative power.

In order to give insight in the computational workflows, we stud-

ied the most diagnostically relevant features. The top 10 features

showed a high accordance with expert analysis, thereby confirming

that the features were not a result of a potential artifact caused by

scaling or computational analysis. Interestingly, erythroid cells and

myeloid progenitors contained the most diagnostically relevant

features. The most discriminative computationally identified feature

was a high side scatter of maturing erythroid cells in MDS patients

that has not been described previously. The increased side scatter

may be partially explained by the presence of ring sideroblasts, as the

SSC correlated significantly with the percentage of ring sideroblasts.

Yet, also patients with less than 15 percent ring, sideroblasts showed

an increased erythoid side scatter, indicating that other dysplastic

characteristics for example, multinucleation and cytoplasmic

vacuolization contribute to an increased side scatter. The same cell

population also harbored two other relevant features; the coefficients

of variation of CD36 and CD71. Both were previously recognized as

diagnostically relevant and are incorporated in multiple expert-

analyzed FC scores including the iFS [9, 10].

F IGURE 2 Characteristics of the most discriminative cell population. (A) The minimal spanning tree represents the computationally detected
populations using the FlowSOM method for tube three (CD71, CD36, CD105, CD117, CD33, CD45, HLA-DR, CD34). The nodes harbor cell
subpopulations with similar expression patterns (visualized in the plot pies). The group of clusters highlighted by the blue background coloring
represents the erythroid population, CD36 and CD71 positive and CD105 negative, that proved to be important for discriminating between MDS
and controls. (B) The computationally detected population depicted in blue represents the erythroid cells that harbor the most relevant features
for discriminating between MDS patients and controls (plots from one representative patient). (C) In the left panel, the erythroid sidescatter of
controls and MDS patients with and without >15% ring sideroblasts are depicted. In the middle and the right panel, correlation of the erythroid
sidescatter with ring sideroblasts and hemoglobin levels are depicted for all MDS patients. Expression parameters underwent hyperbolic arcsine
transformation and approximated min-max scaling (Text S2)
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Myeloid progenitors harbored several relevant features as well,

including an increased forward scatter, indicating larger cell size, and a

reduced coefficient of variation of HLA-DR in MDS. The latter may be

explained by the clonal nature of the MDS progenitors and thereby,

reduced phenotypic heterogeneity resulting in a lower CV as has been

previously described for CD117 [8].

Remarkably, two diagnostically relevant features were derived

from lymphocytes, HLA-DR negative lymphocytes showed an

increased side scatter, whereas HLA-DR positive lymphocytes showed

an increased forward scatter in MDS. This may reflect a different

functional state of lymphocytes or a different lymphocyte subset dis-

tribution [25]. The increased SSC may be explained by an increased

number of NK-cells harboring lytic granules in MDS patients, since we

observed significantly higher percentages of NK cells (CD56+, CD5�,

CD45+) in tube four (Cluster 14, p = 0.002). Although interesting, it

was beyond the scope of this study to further investigate this finding.

Nevertheless, it shows that diagnostic information in suspected MDS

is not limited to myeloid or erythroid cells.

Implementation of the computational diagnostic workflow in the

diagnostic work-up of MDS will reduce subjectivity associated with

expert analysis and interpretation of both FC and morphology infor-

mation. More importantly, due to the increased accuracy, it may

reduce the amount of follow-up bone-marrow aspirates needed,

decrease uncertainty for patients and clinicians and improve timely

access to suitable treatment options. Introduction of the computa-

tional workflow in the diagnostic work-up of patients with clonal

hematopoiesis of indeterminate potential (CHIP), clonal cytopenia of

undetermined significance (CCUS) and idiopathic cytopenia of under-

mined significance (ICUS) requires future research, but eventually may

contribute to treatment decisions and risk stratification in these chal-

lenging conditions [26–28].

The follow-up of our study will have to focus on the validation

of this method, preferably in multicenter setting. Studies into com-

putational FC analysis of acute leukemia and multiple myeloma

have shown that compliance to quality and harmonization stan-

dards allows for successful application in multicenter setting

[29, 30]. Since erythroid progenitors proved to be highly relevant

for diagnosis, erythrocyte-lysing method has to be considered

carefully. Recent reports show that erythrocyte lysis also affects

erythroid progenitors and a non-lysis method may be considered

[31, 32]. One of the challenges for multicenter validation may be

the importance of the side and forward light scatter, since these

parameters are currently difficult to standardize. We propose sev-

eral options for multicenter validation. One option is to diagnose

samples from other center based on the workflow and samples

described in this manuscript. As mentioned before, this will

require far-reaching harmonization, and novel methods for scatter

standardization need to be explored. To circumvent the challeng-

ing scatter parameter harmonization, the workflow described in

this study may be further optimized without scatter parameters.

When excluding scatter parameters, diagnostic accuracy of the

current diagnostic workflow decreased by 10% (Table S8). In

future studies, several options may be considered to increase

accuracy without scatter parameters: for example, include (more

comprehensive) panels for lymphocyte and progenitor subsets,

and further tuning of FlowSOM parameters and machine learning

classifiers. An alternative option for multicenter validation is to

train the workflow on data acquired in every center separately,

this would only require standardization within centers.

To summarize, our work presents the first successful machine

learning-based application for FC to distinguish between MDS and

non-neoplastic cytopenias, that improves upon currently used flow

cytometry diagnostic tools. In addition to the improvements in accu-

racy, the computational workflow is fast, objective, needs fewer

reagents, and offers novel insights into which cellular properties con-

tribute to diagnoses of MDS patients.
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