527 research outputs found

    Modeling interactions of browsing predation, infaunal activity and recruitment in marine soft-sediment habitats

    Get PDF
    In marine soft-sediment habitats, the sediment surface is altered by activities of sediment dwellers (infauna). Such biogenic disturbance can influence recruitment success if settling larvae and juveniles avoid disturbed sites or if juveniles die as a result of disturbance after settling. Because infauna commonly lose exposed body parts to browsing predators and disturb less sediment as a result, we developed a simulation model to examine the interactions between browsing predation, infaunal adult activity, and recruitment. Sediment disturbance in the model was based on data for the polychaete Abarenicola pacifica. We simulated the activity of two general types of predators: prey nippers, which damaged adults only, and sediment biters, which damaged adults and consumed settled juveniles. As both types of predation rates increased, habitat rejection by settlers decreased, but juvenile mortality increased as settlers landing near damaged adults were killed when those adults resumed activity. When prey nippers were active, the interaction between predation and infaunal activity determined recruitment success, and juvenile mortality was highest at intermediate predation rates. When sediment biters were active, they controlled recruitment success by directly consuming larvae. At low adult worm densities, habitat rejection by settlers and juvenile mortality were both low, and browsing predation did not affect recruitment success. At higher adult densities, net recruitment success increased with the rate of predation by prey nippers (the magnitude of increase depended on bite rate and the length of time juveniles were susceptible to mortality), but it was never enhanced by sediment biters

    Spike-Timing Dependent Plasticity in Inhibitory Circuits

    Get PDF
    Inhibitory circuits in the brain rely on GABA-releasing interneurons. For long, inhibitory circuits were considered weakly plastic in the face of patterns of neuronal activity that trigger long-term changes in the synapses between excitatory principal cells. Recent studies however have shown that GABAergic circuits undergo various forms of long-term plasticity. For the purpose of this review, we identify three major long-term plasticity expression sites. The first locus is the glutamatergic synapses that excite GABAergic inhibitory cells and drive their activity. Such synapses, on many but not all inhibitory interneurons, exhibit long-term potentiation (LTP) and depression (LTD). Second, GABAergic synapses themselves can undergo changes in GABA release probability or postsynaptic GABA receptors. The third site of plasticity is in the postsynaptic anion gradient of GABAergic synapses; coincident firing of GABAergic axons and postsynaptic neurons can cause a long-lasting change in the reversal potential of GABAA receptors mediating fast inhibitory postsynaptic potentials. We review the recent literature on these forms of plasticity by asking how they may be triggered by specific patterns of pre- and postsynaptic action potentials, although very few studies have directly examined spike-timing dependent plasticity (STDP) protocols in inhibitory circuits. Plasticity of interneuron recruitment and of GABAergic signaling provides for a rich flexibility in inhibition that may be central to many aspects of brain function. We do not consider plasticity at glutamatergic synapses on Purkinje cells and other GABAergic principal cells

    Process-specific cues for recruitment in sedimentary environments: Geochemical signals?

    Get PDF
    The most biologically and geochemically active marine sediments are characterized by steep chemical gradients within the top centimeters of sediment (Berner, 1980). A common feature of these environments is disruptions of surface sediments by both physical and biotic forces. Growth and mortality rates for new recruits are affected by many of these surface perturbations. At the same time, these disturbances also impose a discontinuity in concentration across the sediment-water interface, and accordingly, a change in surface chemistry. In this paper we present evidence that the cue used by juveniles to distinguish between recently disturbed and undisturbed surfaces may be disruption of geochemical gradients that are typical of nearshore benthic systems. New juveniles exposed to ammonium concentrations typical of disturbed surface sediments exhibit behaviors consistent with rejection of the habitat. Conversely, new juveniles placed onto sediments containing ammonium levels typical of undisturbed surficial sediments rapidly initiate burrowing activity, a sign of acceptability. We also present a numerical model, which assesses the dynamics of small-scale chemical shifts that accompany sediment disruption, to determine (a) what is the magnitude of surface chemistry changes associated with disturbance (i.e. what is the signal strength)? and (b) what are the spatial and temporal scales associated with the return to the undisturbed condition ( recovery )? Model results show that the signal strength, and the return to acceptable conditions, are strongly influenced by the initial gradient. Model predictions of the time required to recover indicate that times to recovery are longer than the interval between disturbance events, but are of the same temporal scale (minutes to hours). Thus, our results suggest that the dynamics of surficial gradients provide a strong signal over appropriate time scales that may reveal the intensity of disturbance and the likelihood of mortality for juveniles. As such, transport-reaction processes which govern porewater concentrations in surficial sediments may also play a role in recruitment processes

    Extension and reconstruction theorems for the Urysohn universal metric space

    Get PDF
    We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. We also prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.Comment: Final and shortened version, 25 pages, to appear in Czechoslovak Math.

    The Obliteration of Truth by Management: Badiou, St. Paul and the Question of Economic Managerialism in Education

    Get PDF
    This paper considers the questions that Badiou’s theory of the subject poses to cultures of economic managerialism within education. His argument that radical change is possible, for people and the situations they inhabit, provides a stark challenge to the stifling nature of much current educational climate. In 'Saint Paul: The Foundation of Universalism', Badiou describes the current universalism of capitalism, monetary homogeneity and the rule of the count. Badiou argues that the politics of identity are all too easily subsumed by the prerogatives of the marketplace and unable to present, therefore, a critique of the status quo. These processes are, he argues, without the potential for truth. What are the implications of Badiou’s claim that education is the arranging of ‘the forms of knowledge in such a way that truth may come to pierce a hole in them’ (Badiou, 2005, p. 9)? In this paper, I argue that Badiou’s theory opens up space for a kind of thinking about education that resists its colonisation by cultures of management and marketisation and leads educationalists to consider the emancipatory potential of education in a new light

    Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems

    Get PDF
    Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition

    Does interspecific competition affect offspring provisioning?

    Get PDF
    Offspring size is one of the most well-studied life-history traits, yet it is remarkable that few field studies have examined the manner in which the relationship between offspring size and performance (and thus, optimal offspring size) is affected by the local environment. Furthermore, while offspring size appears to be plastic in a range of organisms, few studies have linked changes in offspring size to changes in the relationship between offspring size and performance in the field. Interspecific competition is a major ecological force in both terrestrial and marine environments, but we have little understanding of its role in shaping selection on offspring size. Here we examine the effect of interspecific competition on the relationship between offspring size and performance in the field for the marine bryozoan Watersipora subtorquata along the south coast of Australia. Both interspecific competition and offspring size had strong effects on the post-metamorphic performance of offspring in the field, but importantly, they acted independently. While interspecific competition did not affect the offspring size-performance relationship, mothers experiencing competition still produced larger offspring than mothers that did not experience competition. Because larger offspring are more dispersive in this species, increasing offspring size may represent a maternal strategy whereby mothers produce more dispersive offspring when they experience high competition themselves. This study shows that, while offspring size is plastic in this species, post-metamorphic factors alone may not determine the size of offspring that mothers produce
    corecore