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Abstract
We review some fundamental questions concerning the real line of mathematical analysis,

which, like theContinuumHypothesis, are also independent of the axioms of set theory, but are
of a less ‘problematic’ nature, as they can be solved by adopting the right axiomatic framework.
We contend that any foundations for mathematics should be able to simply formulate such
questions as well as to raise at least the theoretical hope for their resolution.

The usual procedure in set theory (as a foundation) is to add so-called strong axioms of
infinity to the standard axioms of Zermelo-Fraenkel, but then the question of their justification
becomes to some people vexing. We show how the adoption of a view of the universe of sets
with classes, together with certain kinds of Global Reflection Principles resolves some of these
issues.

1 Introduction

This essay falls into two distinct parts. We first look at some long-standing questions in mathemat-
ical analysis, from the Russian and French schools of the early 20’th century, and how they have,
or have not, been answered since. Our purpose here is two-fold: to step away from the eternal re-
currence of Cantor’s Continuum Problem in debates of this kind, which is a question in third order
number theory, to give examples in second order number theory, or what logicians would also call
plain ‘analysis’. Our second purpose is to here make the case that the questions considered are nat-
ural ones in the context of mathematical thought. Few mathematical analysts ever come across a
problem where the continuum hypothesis, that ℵ = ℵ, is ever an important consideration, and
they are aware of its independence from the other ZF axioms. Questions such as whether projec-
tions of co-analytic sets are Lebesgue measurable, for example, are much nearer their domains of
interest. If a mathematician wants to knowwhether such a set A, say is Lebesguemeasurable, or has
meagre symmetric difference from an open set, we cannot wish this question away by talking about
a ‘multiverse’, or the dependence of its truth on some model of set theory obtained by forcing, or
on some variant foundational theory or other: they want to know the answer.

Our not so - hidden agenda then, is to make the point that any foundation of mathematics has
to be able to both simply formulate these questions, since they are naturally occurring statements
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of mathematical significance, even to the extent of their being simply written, andmoreover to give
some succour at least to the possibility of their resolution.

The second part is rather different. One advance over the independence phenomena ushered
in by Cohen, has been for set theorists to expand the axioms of Zermelo-Fraenkel set theory (ZF,
or ZFC with the Axiom of Choice added) by so-called ‘strong axioms of infinity’ often phrased in
terms of ‘large cardinal’ numbers (actually it is not their largeness, but the strong or exotic prop-
erties they bear, that yields their strength). The question of justification of the assumption of such
axioms then looms large. (But perhaps it is only a larger worry for the foundationalist than for the
mathematician: whenAndrewWiles was askedwhether it would bother him if the unbounded class
of Grothendieck universes (and hence a proper class of inaccessible cardinals), that prima facie had
been invoked for his proof of Fermat’s LastTheorem, turned out to be necessary for his argument,
his reaction was a metaphorical shrug when not a literal one: not in the slightest. It was neither
here nor there; in short he had a proof. The point of the story is that the mathematics was already
convincing.)

We give a straightforward account of much of this that is familiar to set theorists, but perhaps
not elsewhere, and in the second part (section 4) we deal with a recent proposal that notions of
‘reflection’ on the universe of sets instituted by early researchers such as Ackermann and Bernays,
and warmly endorsed by Gödel, can be expanded in ways to demonstrate the existence of such large
cardinals that solve the problems we give in the first part.

We should like to emphasise that our contribution in the first part is limited only to exposition
and is indebted, amongst others, to [28], [29] and to any general history of descriptive set theory.
The reader will find the descriptive set theory they need in Moschovakis [12].

We should like to warmly thank the referee who saved us from more than one embarrassing
infelicity.

2 The task to hand

We look at some problems in the projective hierarchy of Luzin. However first we give Borel’s hi-
erarchy. In the following a ‘Polish space’ is a separable, complete metrisable space. This includes
the common examples of the realsR with the usual Euclidean metric, Baire spaceNN, and Cantor
space N with metrics derived from the standard product topologies.

Definition 2.1 (Lebesgue (1905) Borel Sets) Let T be a Polish space; let B be the class of closed sets
in T ;
Let B� = {⋃nPN An ∣ ¬An in some B�n for an �n < �}.
Let B = ⋃�<! B� .

Implicit in the definition above is that we perform complementation and union throughout all
the countable ordinals, and the process finishes at stage ! - the first uncountable cardinal: nothing
further would result from continuing further. This analysis of a certain sequence of easily described
sets into a hierarchy is a step in so-called ‘descriptive set theory’ that seeks to analyse the real line
(or other nearby Polish space examples) in terms of a hierarchy of increasing complexity.

Definition 2.2 (Suslin (1917): Analytic Sets) Let T be a Polish space; let B be the class of Borel sets
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in T ˆ T ; let
A =d f {A ∣ DC P B(A = pro j(C)}

where pro j(C) = {x P T ∣ Dy P T ∶ C(x , y)}. ThenA is called the class of analytic sets.

Theorem 2.3 (Suslin (1917)) Borel = A& co-A, that is the Borel sets in a space are precisely those
analytic sets with analytic complement.

So here we have written co-A for the class of sets whose complement is in A (and similarly
will do so below “co-S” for other classes S). Descriptive set theorists would call the class of Borel
sets the ‘dual’ class of A. The study of the projective hierarchy was initiated by the discovery of
Suslin (a student at the time) that Lebesgue had erred in assuming the projection of a Borel set was
Borel. It was not. Indeed there was a hierarchy of sets to be investigated obtained by projection and
complementation:

Definition 2.4 (Luzin (1925), Sierpiński (1925)The Projective Sets) Let T be a Polish space.

S = AĎ Tk(in any dimension) ; Sn+ = {pro j(D) ∣ D Ď Tk ˆ T ,D P co-Sn}; PROJ =⋃
n
Sn .

Lebesgue studied these and showed that they formed a proper hierarchy of increasing com-
plexity as n increased. Sierpinsky later showed they were closed under countable unions and in-
tersections. It is important to realise that these are the definable sets in analysis: the operations
of projection and complementation in the above definition, correspond when written out even in
informal notation to an existential quantification over the elements of T and to negation. With T
equallingR, this means that any definition of a set of reals the analyst writes down will fall inside
the class PROJ.

The following intimates that the projective sets might be very regular: in this case that they can
always be assigned a meaningful, length, area, volume...

Theorem 2.5 (Suslin (1917)) Any D P A is Lebesgue measurable.

However there the matter lay stuck. Attempts to ascend the projective hierarchy and establish,
for example the Lebesgue property conspicuously failed.

Problem 1 (Lebesgue Measurability) Are the sets in PROJ Lebesgue measurable?

It seemed intractable:

(Luzin - 1925) “One does not know and one will never know whether the projective sets
are Lebesgue measurable”.

The Baire and Perfect Subset properties

A set U is said to have the Baire Property (BP) if it has meagre symmetric difference with some
open set. (In turn a set is meagre if it is the countable union of nowhere dense sets. In some sense
it is ‘negligible’.) It was known (Lusin and Sierpiński -1923 [7]) that analytic sets (and so also their
complements) had the Baire property.
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Problem 2 (Property of Baire) Do sets in PROJ have the property of Baire (BP)?

A perfect set is one which is closed but contains no isolated points. Since a perfect set has size
the continuum, Cantor’s continuum problem is settled for such sets.

Problem 3 (Perfect subset property (PSP)) Does every uncountable set in PROJ contain a perfect
set?

It was known (due to Suslin) that every uncountable analytic set contained a perfect subset.
(This may fail for co-analytic sets, for example in the Gödel constructible hierarchy.)

Uniformisation

A function P˚ Ď P Ď X ˆY uniformizes P if

@x[Dy(x , y) P P → D y′ (P˚(x) = y′ ∧ (x , y′) P P)].

A function P˚ is projective if its graph is.

Problem 4 (Uniformization Property (Unif)) Does every set P in T ˆT in PROJ have a projective
uniformizer? To abbreviate: Uni f (PROJ)?

For co-analytic sets a classical theorem yields that there is always a projective uniformizing
function moreover one of the same complexity.

Theorem 2.6 (Novikov-Kondō 1937) Every co-analytic subset of the plane has a co-analytic uni-
formizer.

The above properties of the projective sets are called the regularity properties. For good measure we
add one more.

The Banach-Tarski Property

Problem 5 (Banach -Tarski Problem) Is there a paradoxical decomposition of the sphere in Rn into
projective pieces?

The original Banach-Tarski theorem states that it is possible to decompose a sphere into finitely
many pieces and reassemble the pieces to form two spheres identical to the first. In fact 5 pieces
are enough, but they cannot be Lebesgue measurable. Could there be then such a decomposition
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where the pieces are projective, that is definable in analysis? (See Wagon [23].)

Discussion: to summarise, using some obvious abbreviations, we have a list of 5 Problems.

P1: LM(PROJ)
P2: BP(PROJ)
P3: PSP(PROJ)
P4: Uni f (PROJ)
P5: Banach Tarski with projective pieces.

Each of these questions deals with subject matter that is familiar to mathematical analysts in
the 21st century, and has been so since the early 20th. One of my points in introducing these is to
make clear that such questions are themselves clear. The Continuum Problem is usually wheeled
out to serve as a stalking horse for the difficulties of a realist view of set theory, or at least of the real
continuum, that an author wishes to introduce. However in logical terms the Continuum Prob-
lem is a problem in third order number theory: one must use an existential quantifier ranging over
subsets of the real line. The problems above are expressible without requiring such quantifications
to take place, they are expressible in second order number theory or commonly called analysis: the
quantifiers range over sets of numbers, or over functions fromN toN and the complexity, that is
the number of quantifier alternations, is the number of the rank of the set in the Lusin projective
hierarchy being discussed (roughly speaking). The Real Continuum is often spoken of (cf. Fefer-
man [2]) as having potentially an “indeterminate nature” since its third order statement relies upon
the supposed mysteries of the power set operation when applied to an infinite set. “What is the
cardinality of P(!)?” The problems above are however of a more concrete nature. Analysts rarely
come across questions that turn upon the cardinality of the continuum. They come across ques-
tions about the Lebesgue measurability of definable sets, that is sets within PROJ, on a daily basis.
And they commonly recognise analytic and co-analytic sets as being tractable, as they enjoy these
regularity properties. Thus the Problems listed are concrete problems within, and stated within,
mathematical analysis.

3 Difficulties

We shall see that notwithstanding the ‘simpler’ logical second order definition of the concepts in-
volved in these problems, they are subject to the same independence phenomena as the third order
Continuum Problem, and, as we shall see, for roughly the same reasons. (That is: on the one hand
there is an inner model of the universe of sets in which the continuum hypothesis was true, namely
Gödel’s L - such inner models are transitive subclasses of V which are models of the ZFC axioms;
and on the other hand there are techniques derived from Cohen’s forcing method where he showed
the consistency of the negation of CH with the other axioms. The same dichotomy appears below:
on one hand appeal to the model L to get one answer, and forcing techniques the consistency of the
other.)

Thus: the Regularity Properties can consistently fail:

Theorem 3.1 (Gödel) If ZF is consistent, then so is ZFC+“There is a projective set that is not LM”.
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Indeed there is a projection of a co-analytic (“PCA”) set that fails to be LM. This gives a nega-
tive “answer” to P1. The reason being that in Gödel’s universe of constructible sets, L, with which
he showed the consistency of the axioms of ZF together with CH, there are non-Lebesgue mea-
surable sets at roughly the level of the complexity of the wellordering of the universe of L that he
also demonstrated existed. Recall that the construction of the Vitali non-measurable set uses a
wellordering of the continuum. Thus one expects a failure of Lebesgue measurability at roughly
the same level of complexity as the wellordering of the continuum we have in L, which is used to
construct a Vitali counter-example.

This use of the wellorder of L also leads to the following propositions relating to the problems
above. In L:
P2: there is a PCA-set without the Baire property BP;
P3: there is a co-analytic set that is uncountable with no perfect subset;
P5: there is a paradoxical decomposition of the unit sphere inR using PCA-pieces.

For P4 the matter is slightly more nuanced: For co-analytic sets in the plane or higher dimen-
sions, we have seen by theNovikov-Kondo theorem that they are uniformisable by co-analytic func-
tions. For higher levels the wellorder of L ensures that sets in the projective classes PCA, PCPCA...
etc. are all uniformisable by functions in the same class. (And if those hold for a suitable class Γ it is
a straightforward result that it must fail for their complements in co-Γ.) A more delicate question
for the Uniformisation Problem is to ask that the uniformising function come from the very same
class or level in the projective hierarchy as the set being uniformised. Then by Novikov-Kondo this
holds for co-analytic sets; in L this also holds for PCA sets (and for further classes on the repeated
projected side: PCPCA . . . etc. .)

Whereas Gödel’s construction of L gives a canonical inner model ofV - the universe of all sets of
mathematical discourse, there are various constructions based on extensions of Cohen’smethod of
forcingwhich allow one to conclude that consistent with the axioms of ZF is the possibility that var-
ious levels of the projective hierarchy can be all Lebesgue measurable, or enjoy the other regularity
properties.

Indeed a renowned theorem of Solovay allows that all sets are Lebesgue measurable and have
the Baire property:

Theorem 3.2 (Solovay (1964) [19],[21]) If the theory ZF+ “There is an inaccessible cardinal” is
consistent, then so is the theory ZF + DC+ “Every set that is LM and has the BP”.

The above is quite remarkable.TheDC is ‘DependentChoice’ that allows for an infinite sequence
of choices in any given relation R(v, v) to be made. This is usually - but not always - all that an
analyst requires. (The full Axiom of Choice is paradoxically, usually only invoked to guarantee the
existence of pathological sets, i.e. difficult sets that are not LM or do not have the regularity prop-
erties etc. ) The extra assumption beyond ZFC of the inaccessible cardinal was queried for many
years as to its necessity. Eventually Shelah [18] showed that it was needed for Lebesgue measurabil-
ity of all sets but not for the Baire property (thus breaking what had seemed a tight link, that what
was true for sets of one kind was true of the other.)

However, these are only consistency results, and do not tell us about the facts of the matter in
V . Notwithstanding this, mathematicians might simply have shifted to a view that all sets that they
could write down and specify were LM and BP and used DC with comfort. But they seemingly
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have not.
Solovay also showed that, even retaining the full axiom of choice all definable sets of reals have

strong regularity properties:

Theorem 3.3 (Solovay (1964) [19],[21]) If the theory ZF+ “There is an inaccessible cardinal” is
consistent, then so is the theory ZFC+ “Every set projective set is LM and has the BP”.

4 Resolution and Reflection

4.1 Resolution

Are there principles that are somehow missing from the ZFC axioms, and that could resolve these
problems? For many set theorists the assumption that all sets are in Gödel’s L - which indeed re-
solves these problems in a somewhat negative direction - is unpalatable. The iterative conception of
set of sets appearing ever upwards in increasing ranks in a hierarchy built along the ordinals using
the power set operation:

V = ∅; V�+ = P(V�); Lim(�)→ V� = ⋃
�<�

V�

has an entirely mathematical feel to it. The construction of L replaces the successor step with only
allowing sets definable in first order logic rather than the full power set. However why should
this purely logical construction deliver all the sets that there are, sets which arise from a purely
mathematical set theoretical conception?

It is a well known part of this story that Gödel himself allowed for the possibility that strong
axiomsmight settle questions such as CH. However then a discussion then ensures about the justi-
fication of these strong axioms. At such a length of time since Zermelo’s formulations of the axioms
for sets, and with the additions of Skolem, and Fraenkel, it seems inconceivable that any basic fact
of sets has been overlooked in the ZFC system. Any supplementing axioms may have to have a dif-
ferent set of justifications or grounds for acceptance. It is usual at this point to talk about intrinsic
grounds that follow from the iterative conception of set and the V hierarchy as outlined as above,
or more widely ‘set-structure’ concerning the whole of (V , P). These are to be contrasted with ex-
trinsic grounds where the consequences of these hypotheses are so rich and so compelling that we
feel we should to adopt them.

There is much to be said (and has been) at this point but we shall pass over this. Our targeted
aim is that certain viewpoints of the universe (V , P) encourage a view that ‘large cardinals’ or ‘strong
axioms of infinity’ can be invoked by ‘reflecting’ on the universe. Solovay delivered a striking clue
in an early theorem relying on the assumption of a measurable cardinal:

Theorem 4.1 (Solovay [20]) ZF proves that if there is a <-�-additive 2-valued measure on some set
of cardinality � > ℵ then BP(PCA), LM(PCA), PSP(PCA).

These conclusions are then quite in contradiction to the picture given in Gödel’s L. There is
also a mystery as to why the existence of measures, or equivalently ultrafilters on fields of sets quite
remote from V!+ (which contains all the real numbers, or elements of Baire space or ...) should
affect properties down at this very modest rank.
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As oblique as the idea at first appears the determinacy of two person perfect information games
implies much about the regularity properties of the real continuum.

Let A Ď NN (or some XN). The game GA is defined as follows:

I plays k k . . . kn . . .
II plays k k . . . kn+ . . .

● I wins if and only if x = (k, k, . . .) P A.
● GA is determined if either Player has a winning strategy in this game.

Let us write, for a class of set Γ “Det(Γ)” for the statement that for every set A P Γ that the game
GA is determined. “Det(PROJ)” is then read as “ProjectiveDeterminacy” or sometimes “Definable
Determinacy”.

Theorem 4.2 (Mycielski [13], [14]) Det(PROJ) implies Regularity for the projective sets.

Thus the Solovay theorem from ameasurable cardinal, and the results from assumingDefinable
Determinacy were leading in the same direction. The following indicated that these matters were
no coincidence;

Theorem 4.3 (Martin [9]) ZF proves that if there is a <-�-additive 2-valued measure on some set of
cardinality � > ℵ then Det(Anal ytic).

This was much earlier than the landmark theorem of Martin:

Theorem 4.4 (Martin [10]) ZF proves Det(Borel).

(This remains themost quotable theorem inmathematics that requires ZF - as H. Friedman had
previously shown ([3]) that!-many iterations of the power set operation together with appropriate
instances of Replacement would be required.)

However ZFC is just not strong enough to prove Det(Anal ytic) on its own: this is because
Det(Anal ytic) can prove the consistency of ZFC. (And we cannot contradict Gödel’s Incomplete-
nessTheorems.) After much effort the prize was won:

Theorem 4.5 (Martin-Steel [11]) If there are infinitely many Woodin cardinals then Det(PROJ)
and hence Regularity for the projective sets.

Theorem 4.6 (Woodin [27]) If there are infinitely many Woodin cardinals and a measurable cardi-
nal above them, then in L(R), the Gödel closure ofR through all the ordinals, GA is determined for
every A ĎR. And hence Regularity for all sets in L(R).

Thus “AD”, the axiom that games based on any sets are determined, and which thus implies the
regularity properties for all sets, is consistent with DC (as it holds in L(R)) but not the full AC. We
could note also, that as strategies for such games can themselves be construed as sets of integers, or
reals, that AD holding in L(R), is equivalent to the statement that all games that are definable in
L(R) are determined (in V ). We thus may prove outright the regularity properties from sufficient
large cardinals. But we may be thought to have replaced a collection of problems by problems yet
more problematic: how to justify the existence of such cardinals in the universe (V , P)?
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4.2 Reflection

To say that the universe of all sets is an unfinished totality does not mean objective unde-
terminateness, but merely a subjective inability to finish it.

Gödel, in (Wang: “A Logical Journey: From Gödel to Philosophy”).

We take the view that the ordinals for example, indeed form a determinate concept: they are
the class of sets that are transitive and wellordered by set membership. They form a proper class
as Cantor and Burali-Forti (the latter eventually) recognised. We denote by On the totality of all
ordinals.

Historically reflection principles are associated with attempts to formulate the idea that no one
notion, idea, statement can capture our whole view of V = ⋃�POn V�. Such reflection principles
are usually formulated in some language (first or higher order) as positing that sentences ' (when
interpreted in the appropriate way over V ) that hold in ⟨V , P, . . .⟩, must also hold in some ⟨V� , P
, . . .⟩. Let us call this sentential reflection. This is again a broad subject, and the reader is directed to
Koellner’s article ‘Reflection Principles’ ([5]) for a more in-depth discussion of the possible scope
and limitations of reflection principles. Koellner argues that principles that may be deemed of an
‘intrinsic nature’ are unable to deliver any strong axioms that are inconsistentwith a view thatV = L,
and so are not strong enough by themselves to prove outright anything about the real continuum
beyond what we can already in L.

We first review some of the traditional sentential reflection principles.

(1) Montague-Levy: First order Reflection.
(R) : For any '(v, . . . , vn) P LṖ

ZF ⊢ @�D� > �@x⃗ P V�['(x⃗)↔ '(x⃗)V� ].

First order Reflection is actually provable in ZF. Indeed if we drop Infinity and the Replacement
Scheme from ZF, the resulting theory, when augmented by (R), gives back Infinity and Replace-
ment. It is a scheme-theorem and thus a metatheorem: it is a theorem only with one ' at a time.
However by formalising a Σn-Satisfaction predicate we have:

For each n, ZF ⊢ DCn[Cn Ď On is a c.u.b. class so that for any ' P FmlΣn :

@� P Cn@x⃗ P V�['(x⃗)↔ '(x⃗)V� ]].

Informally we write this as @� P Cn ∶ (V� , P) ăΣn (V , P).

(2) Levy, Bernays Reflection.

Suppose we allow some second ordermethods and allow proper classes to enter the picture more
actively. If we allow reflection on classes thenwe can deliver somemodest large cardinals. Let Φ(D)
be the assertion that:

“D is a function from On to On, but @� D“� is bounded in On”.
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By the Axiom of Replacement for any class D, we have: Then

(V , P,D) ⊧ Φ(D).

If we allow the assumption that @DΦ(D) reflects to some V� we shall have:

@D Ď V� (V�, P,D) ⊧ Φ(D).

This implies that � is a strongly inaccessible cardinal. However strongly inaccessible cardinals are
strongly inaccessible in L, and are thus consistent with “V = L”. The strict ZF-ist will eschew such
an argument as it quantifies over all classes and not all such are necessarily definable over (V , P).

Whilst Levy [6] remained at the level of discussing Reflection to obtain inaccessible cardinals,
and inductively defined hierarchies of such principles relating to the much earlier cardinals of Paul
Mahlo, Bernays ([1]) allowed Φ above to be any Π

n formula about some parameterD.The resulting
strengthened reflection principle now goes by the name of an indescribability property: any Π

n-
propertymay be reflected downwards. Indeed there are Π

n+ sentences, that if reflected over (V , P)
to some (V�, P) ensure that (V�, P) itself is Π

n-indescribable in the same sense.1 The point to note
here is that we have firmly entered the realm of second order entities: we must use these to realise
the second order variables of our language, and moreover we must have a domain of quantification
for the string of quantifiers in such a sentence to vary over. It is quite possible to consider third,
fourth, n’th order languages over (V , P) and the associated reflection principles. But then such a
layering of ranks of classes above V leads to the inevitable question as to why we do not declare
such layers to be inhabited by sets.

We shall see that it is part of our viewpoint to avoid even second order methods wherever pos-
sible. We swallow the logical necessity of the existence of classes, as Cantor, Russell, and Burali-
Forti showed, and admit of two types of objects: the mathematical realm of sets which constitute
the universe of mathematical discourse (V , P); but we consider classes as just the parts of V (in a
mereological fashion), which themselves may or may not be sets.

Gödel again:

All the principles for setting up the axioms of set theory should be reducible toAckermann’s
principle: The Absolute is unknowable. The strength of this principle increases as we
get stronger and stronger systems of set theory. The other principles are only heuristic
principles. Hence, the central principle is the reflection principle, which presumably will
be understood better as our experience increases. Meanwhile, it helps to separate out
more specific principles which either give some additional information or are not yet
seen clearly to be derivable from the reflection principle as we understand it now.”

(Section 8.7.9 of Wang [24]).

(Our italics.)

The Universe of sets cannot be uniquely characterized (i.e. distinguished from all of its
initial segments) by any internal structural property of the membership relation in it,

1We have not exactly delineatedmodern indescribability properties here, which usually are defined with an extra free
predicate symbol, but we only wish to give the flavour of this. See Kanamori [4], I.6, for a fuller discussion.
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which is expressible in any logic of finite or transfinite type, including infinitary logics
of any cardinal number.

(Wang - ibid.)

Generally I believe that, in the last analysis, every axiom of infinity should be derivable
from the (extremely plausible) principle that V is indefinable, where definability is to
be taken in [a] more and more generalized and idealized sense. (Wang, ibid., p. 285)

Gödel is presumed to be happy with considering logics of higher types, and thus Bernays may
not be overstepping that mark. But the reflection we have proposed is not one of a logical character,
meaning in a logic of higher types, or in an infinitary language; it is a structural reflection that takes
the above ‘unknowability’ of the first quote above, or we prefer: ‘ineffability’, of thewhole universe of
sets, together with its parts, and reflects on that structure to bring it down to a set sized substructure.

Strengthening Reflection Principles

As we alluded to above, Koellner ([5]) has outlined a heuristic argument that intrinsic justifi-
cations of reflection will never produce a justification for a large cardinal that cannot reside in L,
The cardinals or principles produced will all be consistent with V = L (and he argues that the small
large cardinals they could conceivably justify are technically weaker than an !-Erdős cardinal).

The Challenge then: To justify a set-theoretic reflection principle that will ensure the existence of
large cardinals (or strong axioms of infinity) that are sufficient to deliver the hypotheses needed for
modern set theoretical principles.

We first mention some recent attempts at strengthening reflection. Notwithstanding Bernays’
higher order reflection of sentences, Reinhardt pointed out that for formulae with third order pa-
rameters, the reflection scheme was inconsistent ([16]). Tait ([22]) attempted to provide some relief
from this by placing restrictions on the substitutions possible and defined syntactic classes of higher
order formulae with parameters on which one could nevertheless reflect, and showed the consis-
tency of some of these principles from a measurable cardinal, and left the consistency of others
open. Koellner ([5]) showed the latter inconsistent but proved the consistency of the former from
a so-called !-Erdős cardinal, which we do not define here, but is a cardinal again that is consistent
with V = L. He further gave a heuristic argument that any reflection principle that was based on
the intrinsic iterative hierarchy of sets, and which include such sentential reflections, are all limited
in their outcomes, would have to be intraconstructible as its consistency would be derivable from
such an !-Erdős cardinal. Such cardinals then would never be not strong enough to prove outright
anything about the real continuum beyond what we can in L.

To summarise we thus have:

●The Reflection Principles to date are all consistent with a view of the universe as being L the
constructible one: they are intra-constructible.

●However these are all motivated on a syntactic level.
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The moral is thus: We need stronger Reflection Principles: those that generalise Montague-
Levy are not up to the task of providing any justification for the large cardinals needed for modern
set theory.

Wehave proposed ([26], [25]) aGlobal Reflection Principle to overcome this intraconstructibility
limitation. This principle has as its inspiration, the properties related to those of a subcompact
cardinal, and is more of the nature of structural reflection rather than sentential or linguistic.

It is quite legitimate to ask first why do we need stronger reflection principles? Here is one very
good reason.

Theorem 4.7 (Woodin) Suppose there is a proper class of Woodin cardinals. Then Th(L(R)) is
immune to change by set forcing.

The import of the theorem is that the perhaps baleful effects of Cohen’s forcing method can
have no effect on the fact of the matter as to which sentences are true in analysis, or indeed of any
statement about the reals and ordinals: in L(R) every object is definable from such, and as such it
encompasses analysis, the projective hierarchy, and way beyond, using iterated definability through
On. This is thus a strong absoluteness result. Whilst Woodin cardinals have a somewhat tricky
definition (which is why we have not defined them here) it turns out that this notion is absolutely
central to proving the consistency of many concepts in modern set theory. The supposition of their
existence, or indeed that they are unbounded in the ordinals, is now ubiquitous in current theorems
of set theory.

We shall therefore intend to define such a Global Reflection Principle (GRP) which will deliver
an unbounded class of such large cardinals. We take an almost naive Cantorian stance, and con-
sider the absolute infinities that he identified at that time: the absolute infinity of On the ordinals,
Card the class of cardinals, V itself etc. , and we collect these (without as yet being too precise as to
what this means), into a family C, but our viewpoint will be that C is the collection of the mereolog-
ical parts of V . Some of these will be set-sized and we simplify matters by simply identifying them
with the corresponding sets. Those parts that are not sized are the interesting entities in C, and we
think of these as the proper classes. We then consider a structural reflection of the whole universe
(V , P, C) together with its parts to a small structure.

Global Reflection Principle - GRP

We take a small (meaning set-sized) substructure of (V , P, C), the universe with all of its parts,
C, and ask that this is then isomorphic to a small part of V : namely some V� together with all
of its parts. The ‘parts’ of V� are naturally those D Ď V�, that is V�+. The language L in which
we wish to state the principle’s reflection properties is the usual first order language for set theory,
but augmented with predicate variables X, X, X, . . . that will vary over the collection C. It is
important to note that there are no second order quantifers over these variables. We thus avoid
having an explicitly demarked domain of quantification for the second order objects. We thus write
Σ
! for the class of formulae of L. In the second line of the next definition the first structure is

thus ‘Σ
! ’-elementary in the second, meaning as usual that such formulae with substitutions for set

variables from X and for predicate variables from C′ have the same truth value in both structures.
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Definition 4.8 (Global Reflection Principle - GRP) There is a set X Ď V and a collection C′ Ď C
with :

(X , P, C′) ăΣ
!
(V , P, C)

and:
(X , P) = (V�, P)

for some � P On, and so that
V�+ = {D ∩ V� ∣ D P C′}.

This can be summarised as we have a transitivising isomorphism � so that

� ∶ (X , P, C′)Ð→ (V�, P,V�+)

with � the identity on X.

Hence we have
(V , P, C) is reflected down to (V�, P,V�+)

Or to put it another way, we are thus requiring that there is set-sized simulacrum of

(V , P, C) that is of the form (V�, P,V�+).

Indeed the inverse of � yields an elementary embedding in an equivalent formulation that is perhaps
more congenial to set theorists:

There is an initial segment of the universe V�, and a nontrivial elementary embedding

�− ∶ (V�, P,V�+)Ð→Σ
!
(V , P, C)

with critical point � (i.e., �−(�) > � whereas for z P V�, �− is the identity: �−(z) = z).

Thus all that �− does is move, or stretch, objects from V�+ to objects in C. Equivalently, as
there are no ‘points’ above V� in X, �’s collapsing action on any X P C satisfies �(X) = X ∩ V�.
Thus, for example the part ofV which is the class of ordinals,On, is in C, and �−(�) = On. (Where
� here is considered a class over V� and as an element of V�+.) We thus have

'(x⃗ , X⃗)(V� ,P,V�+) ↔ '(�−(x⃗),�−(X⃗))(V ,P,C) ↔ '(x⃗ ,�−(X⃗))(V ,P,C).

Why GRP? Define a field of classes U on P(�) by

X P U ↔ � P �−(X).

As P(�) Ď V�+ Ď dom(�−) by Σ
 -elementarity (in �−), this is an ultrafilter. Standard argu-

ments show that U is a normal measure on �, and thus � is a measurable cardinal. But then:

@� < � ⟨V , P⟩ ⊧“D� > �(� a measurable cardinal)” ⇒
⇒ ⟨V�, P⟩ ⊧“ @�D� > �(� a measurable cardinal)” ⇒
⇒ ⟨V , P⟩ ⊧“There are unboundedly many measurable cardinals”.

It is an exercise in the appropriate definitions to show that the critical point � is also a Woodin
(indeed a Shelah) cardinal. So we thus have:

13



Theorem 4.9 (GRP) (V , P) ⊧ @�D� > �(� a measurable Woodin cardinal).

Corollary 4.10 By the results of Martin-Steel and Woodin mentioned above, GRP then implies:

• a) Projective Determinacy Det(PROJ) and (AD)L(R).

• b) (Woodin) Th(L(R)) is fixed: no set forcing notion can change Th(L(R)), and in partic-
ular the truth value of any sentence about reals in the language of analysis, thereby including
Det(PROJ).

5 Discussion

There is a discussion to be had as to whether we have here a genuine reflection principle. As we have
intimated, the nature of the reflection that is occurring is logical in as much as it relies on passing
from the whole universe V (with its parts) to a substructure that preserves a certain amount of
logical elementarity, namely Σ

!-elementarity. But it is structural in that it requires the substructure
to be isomorphic to an initial segment of the universe V� together with all of V�’s classes, that is
V�+. It is quite possible to posit weaker reflection principles where the second order domain of
�− is only a proper subset of V�+. It might for example only include P(�)L for example. Whereas
this would be enough to deduce the existence of ♯, that is the existence of a non-trivial embedding
�− ∶ L Ð→ L, we could not define the measure on P(�) as we did above.

We could view GRP as the natural limit of a series of principles where we demanded more and
more classes of V� to be in the image of � (whilst perhaps allowing � to vary to achieve this). Thus
larger and larger inner models M would have M-measures defined on their P(�)M as we just saw
for L yielding ♯ above.

We did not quantify over the collection C in any fashion. All we required of it was that it con-
tained sufficient elements to allow the definition of the GRP.This allowed us to be somewhat vague
as towhat the collection C was.The status of C is discussed in [25] and [26].Therewe discuss various
approaches as to how to regard C, for example through the manœuvre of considering plurals and
plural quantification. However we reject this in favour of a mereological approach. This fulfils the
need to find a way to sufficiently distinguish sets from classes (see [8] for a discussion on this). The
argument often deployed against considering higher order types over the top of V is that in such
a case ‘there was no reason to stop building V at the level On’ (or some such). By thinking of the
ordinals as a determinate concept, we have a class of sets priorly given in a mathematical manner.
In this viewpoint there are no ‘ordinals beyond V ’: V is the universe of all mathematical objects,
and ordinals are mathematical objects. Likewise there is a mathematical power set operation P(x),
but a ‘power-class operation’ acting on the parts of V would be something else altogether different,
and would not be considered a mathematical operation.

We did not (yet) formalise GRP in any class theory. We think of the development of our in-
tuitions concerning V and its parts as taking place in a pre-formalised state: these include are our
intuitions concerning the ineffability of (V , P, C), and are not yet formalised. We think simply as
mathematicians do about the semantics, or structure of our concepts.

One could then proceed to formalise the statement of GRP in NBG - class theory.The assertion
of the existence of such a � appears prima facie to be third order, but with usual coding tricks, in
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fact it can be regarded as an assertion that a certain kind of class exists and thus is a Σ
 statement. It

is not hard to come up with strengthenings: we could for example increase the amount of elemen-
tarity demanded to include that of a language with full quantification over the variables Xi . This
‘mereological reflection’ then has reflection involving quantified statements about the parts of V .
This is natural, but a stronger principle than GRP. However then one must be specific about the
domain of quantification, i.e. the class C. Our own inclination is to eschew second order methods
whenever possible - being not entirely convinced of their coherence. One point that can be made is
that with (V�, P,V�+) being a natural model of Morse-Kelley class theory, if we have an enhanced
version of GRP with this form of full second order reflection, we can carry this up to deduce that
(V , P, C)must also form a model of Morse-Kelly.

A final technical word on the consistency of GRP. One can easily see that:

Theorem 5.1
Con(ZFC + D�(� is 1-extendible))Ð→ Con(NBG +GRP).

Indeed 1-extendibility is stronger than the enhanced versions of GRP mentioned above. Sam
Roberts in [17] has extended the above account of global reflection to yield a very flexible fam-
ily of higher order reflection principles which, when suitably formulated, can yield supercompact
cardinals and more. But these cross the philosophical threshold we have stopped short of: not to
quantify over the parts of V . They also cross over the admittedly more technical set theoretical
threshold into those cardinals, such as supercompacts, that imply the existence of embeddings j
of the universe into an inner model that are discontinuous at the successor cardinal of the critical
point (the first ordinal moved) of j. Such embeddings require representation by systems of ultra-
powers known as ‘long extenders’, which we do not define here, but for a discussion of ‘long’ and
‘short’ extender types see Section 1 of [15]. The GRP here falls just short of justifying such. The
GRP embedding is of a ‘superstrong’ type where On is the target of the critical point � and is at the
limit of those that can be expressed using short extenders. Here a cardinal � is called superstrong
if there is an embedding j, preserving elementarity in the usual first order language of set theory,
with critical point �, and an inner model M so that j ∶ V Ð→M with VM

j(�) = Vj(�). Note now
that j↾V�+ ∶ V�+Ð→VM

j(�)+ however without any assumption that the latter is Vj(�)+. (The latter
would require -extendibility.) But taking C = VM

j(�)+, it is easy to see (Vj(�), P, C) together with
j↾V�+ gives a set model of NBG +GRP.

Hence the last theorem can bemodestly improved, in that the antecedent is a large cardinal that
can be expressed by short extenders.

Theorem 5.2

Con(ZFC + D�(� is superstrong))Ð→ Con(NBG +GRP).

It is possible given such a j from GRP to define from it a directed system of short extenders
from V , in such a way that this directed system expresses an ultrapower embedding which when
restricted toV�+ is just j. We thus get back j from this directed system (see the discussion in [4] Ch.
5 Sect. 26 for example.) Were long extender embeddings ever to be shown, as a class, inconsistent,
then GRP is pretty much what we would be left with.
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