674 research outputs found
Genetic Diversity Analysis among Inbred Lines of Pearl millet [Pennisetum glaucum (L.) R. Br.] Based on Grain Yield and Yield Component Characters
An experiment was conducted to assess genetic divergence among 60 inbred lines included
27 maintainer (B-) and 33 restorer (R-) lines of pearl millet based on quantitative data of
grain yield and its ten component traits using hierarchical cluster and principal component
analysis (PCA). The PCA identified four principal components (PCs) with Eigen value
greater than 1.00 and accounted for 70.97 per cent of total variation. Most important traits
in PC1 are days to 50 per cent flowering, plant height, ear length, ear diameter, grain yield
per plant, fresh stover yield per plant, dry matter yield per plant and grain harvest index
and captured 26.85 per cent of total variation. PC2 was represented by ear diameter and
dry matter yield per plant and contributed 18.06% of total variation. Two characters, grain
yield per plant and grain harvest index contributed positively on all the first four PCs.
Cluster analysis grouped the inbred lines into eight clusters and the characters, plant
height, 1000 grain weight, dry matter yield per plant and productive tillers per plant
contributed maximum towards genetic divergence. The grouping patterns of parental lines
in PCA and cluster analysis were almost in agreement with each other with minor
deviations. The study noticed maximum inter cluster distance between lines of cluster I
and II with cluster VII, indicating that lines included in these clusters may have high
heterotic response and produce better seggregants when used in Pearl millet hybridization
programme
Recommended from our members
Elevated Tumor Lactate and Efflux in High-grade Prostate Cancer demonstrated by Hyperpolarized 13C Magnetic Resonance Spectroscopy of Prostate Tissue Slice Cultures.
Non-invasive assessment of the biological aggressiveness of prostate cancer (PCa) is needed for men with localized disease. Hyperpolarized (HP) 13C magnetic resonance (MR) spectroscopy is a powerful approach to image metabolism, specifically the conversion of HP [1-13C]pyruvate to [1-13C]lactate, catalyzed by lactate dehydrogenase (LDH). Significant increase in tumor lactate was measured in high-grade PCa relative to benign and low-grade cancer, suggesting that HP 13C MR could distinguish low-risk (Gleason score ≤3 + 4) from high-risk (Gleason score ≥4 + 3) PCa. To test this and the ability of HP 13C MR to detect these metabolic changes, we cultured prostate tissues in an MR-compatible bioreactor under continuous perfusion. 31P spectra demonstrated good viability and dynamic HP 13C-pyruvate MR demonstrated that high-grade PCa had significantly increased lactate efflux compared to low-grade PCa and benign prostate tissue. These metabolic differences are attributed to significantly increased LDHA expression and LDH activity, as well as significantly increased monocarboxylate transporter 4 (MCT4) expression in high- versus low- grade PCa. Moreover, lactate efflux, LDH activity, and MCT4 expression were not different between low-grade PCa and benign prostate tissues, indicating that these metabolic alterations are specific for high-grade disease. These distinctive metabolic alterations can be used to differentiate high-grade PCa from low-grade PCa and benign prostate tissues using clinically translatable HP [1-13C]pyruvate MR
Growth performance of spiny lobster, Panulirus homarus (Linnaeus, 1758)
812-819The present study was undertaken to evaluate the growth performance, biochemical composition, feed utilization and water quality parameters of spiny lobster, Panulirus homarus in indoor culture. The fattening experiments was carried out with five different fresh feeds viz. green mussel, clam, oyster, trash fish and pellet feed. Indoor experimental culture of juvenile lobster, Panulirus homarus lasted for 75 days to find better growth rate and survival. There was a reasonable change in the carapace length and weight of lobsters fed with clam and green mussel. Their Biomass was significantly better than other three feeds viz. oyster, pellet feed and trash fish. The spiny lobster, Panulirus homarus fed with clam, green mussel and oyster can increase the size of carapace length compared with the trash fish and pellet fed one. The maximum growth performance was seen during the 75th day on the clam fed experiment which was found to be ranged between (6.7 ± 0.02 - 7.2 ± 0.03 cm) in carapace length, (6.1 ± 0.1 - 6.7 ± 0.08 cm) in body length, (12.8 ± 0.03 - 13.8 ± 0.08 cm) in total length and (105 ± 0.07 - 112 ± 0.08 g) in total weight. The maximum protein content (15.10 ± 0.34 g/100 g), carbohydrate (1.25 ± 0.06 g/100 g), lipids (5.25 ± 0.13 g/100 g) and moisture (76.15 ± 0.9 g/100 g) was noted in clam feed experiment. The maximum feed was also utilized during the clam fed experiment (45.39 ± 0.03 g). The moderate feed utilization were observed during the green mussel fed experiment (42.51 ± 0.02 g). The lowest feed utilization was observed in pellet fed experiment (23.75 ± 0.01 g). The water quality parameters were analyzed in the culture tank before and after the experiment
An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core
Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life
BACKGROUND: Low-dose-rate permanent prostate brachytherapy (PPB) is an attractive treatment option for patients with localised prostate cancer with excellent outcomes. As standard CT-based post-implant dosimetry often correlates poorly with late treatment-related toxicity, this exploratory (proof of concept) study was conducted to investigate correlations between radiation − induced DNA damage biomarker levels, and acute and late bowel, urinary, and sexual toxicity. METHODS: Twelve patients treated with (125)I PPB monotherapy (145Gy) for prostate cancer were included in this prospective study. Post-implant CT based dosimetry assessed the minimum dose encompassing 90% (D(90%)) of the whole prostate volume (global), sub-regions of the prostate (12 sectors) and the near maximum doses (D(0.1cc), D(2cc)) for the rectum and bladder. Six blood samples were collected from each patient; pre-treatment, 1 h (h), 4 h, 24 h post-implant, at 4 weeks (w) and at 3 months (m). DNA double strand breaks were investigated by staining the blood samples with immunofluorescence antibodies to γH2AX and 53BP1 proteins (γH2AX/53BP1). Patient self-scored quality of life from the Expanded Prostate Cancer Index Composite (EPIC) were obtained at baseline, 1 m, 3 m, 6 m, 9 m, 1 year (y), 2y and 3y post-treatment. Spearman’s correlation coefficients were used to evaluate correlations between temporal changes in γH2AX/53BP1, dose and toxicity. RESULTS: The minimum follow up was 2 years. Population mean prostate D(90%) was 144.6 ± 12.1 Gy and rectal near maximum dose D(0.1cc) = 153.0 ± 30.8 Gy and D(2cc) = 62.7 ± 12.1 Gy and for the bladder D(0.1cc) = 123.1 ± 27.0 Gy and D(2cc) = 70.9 ± 11.9 Gy. Changes in EPIC scores from baseline showed high positive correlation between acute toxicity and late toxicity for both urinary and bowel symptoms. Increased production of γH2AX/53BP1 at 24 h relative to baseline positively correlated with late bowel symptoms. Overall, no correlations were observed between dose metrics (prostate global or sector doses) and γH2AX/53BP1 foci counts. CONCLUSIONS: Our results show that a prompt increase in γH2AX/53BP1foci at 24 h post-implant relative to baseline may be a useful measure to assess elevated risk of late RT − related toxicities for PPB patients. A subsequent investigation recruiting a larger cohort of patients is warranted to verify our findings. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13014-017-0792-1) contains supplementary material, which is available to authorized users
Genotoksičnost metalnih nanočestica: osvrt na podatke istraživanja In vivo
With increasing production and application of a variety of nanomaterials (NMs), research on their cytotoxic and genotoxic potential grows, as the exposure to these nano-sized materials may potentially result in adverse health effects. In large part, indications for potential DNA damaging effects of nanoparticles (NPs) originate from inconsistent in vitro studies. To clarify these effects, the implementation of in vivo studies has been emphasised. This paper summarises study results of genotoxic effects of NPs, which are available in the recent literature. They provide indications that some NP types cause both DNA strand breaks and chromosomal damages in experimental animals. Their genotoxic effects, however, do not depend only on particle size, surface modifi cation (particle coating), and exposure route, but also on exposure duration. Currently available animal studies may suggest differing mechanisms (depending on the duration of exposure) by which living organisms react to NP contact. Nevertheless, due to considerable inconsistencies in the recent literature and the lack of standardised test methods - a reliable hazard assessment of NMs is still limited. Therefore, international organisations (e.g. NIOSH) suggest utmost caution when potential exposure of humans to NMs occurs, as long as evidence of their toxicological and genotoxic effect(s) is limited.S povećanjem proizvodnje i primjene niza različitih nanomaterijala (NM) raste i potreba istraživanja njihovih mogućih citotoksičnih i genotoksičnih učinaka kao i drugih štetnih učinaka na zdravlje u uvjetima profesionalne ili opće izloženost ljudi. Indikacije potencijanog oštećenja DNA kojeg uzrokuju nanočestice u velikoj mjeri proizlaze iz nedosljednih in vitro ispitivanja. Kako bi se razjasnili ti učinci, naglašena je potreba provedbe in vivo ispitivanja. Ovaj pregledni rad sažima rezultate procjene genotoksičnih učinaka nanočestica koji su objavljeni u novijoj stručnoj i znanstvenoj literaturi. Navedeni rezultati pokazuju da određene nanočestice uzrokuju lomove u molekuli DNA i oštećuju kromosome u eksperimentalnim životinjama. Njihovi genotoksični učinci ne ovise samo o veličini čestice, modifi kaciji površine (oblaganje čestice) i načinu izlaganja, već i o trajanju izloženosti nanočesticama. Postojeća istraživanja provedena na životinjama upućuju na različite mehanizme koji ovise o trajanju izlaganja i pomoću kojih živi organizmi reagiraju na doticaj s nanočesticama. Međutim postoje brojne nedosljednosti u novijoj literaturi, a standardne testne metode nisu dostupne pa je stoga pouzdanija procjena opasnosti od izlaganja nanomaterijalima u ljudi još uvijek veoma ograničena. Stoga se u međunarodnim dokumentima savjetuje oprez prilikom svakog izlaganja ljudi nanomaterijalima kako bi se spriječili mogući opći toksični genotoksični učinci
An environmental evaluation of food waste downstream management options: a hybrid LCA approach
Food waste treatment methods have been typically analysed using current energy generation conditions. To correctly evaluate treatment methods, they must be compared under existing and potential decarbonisation scenarios. This paper holistically quantifies the environmental impacts of three food waste downstream management options—incineration, composting, and anaerobic digestion (AD).
Methods
The assessment was carried out using a novel hybrid input–output-based life cycle assessment method (LCA), for 2014, and in a future decarbonised economy. The method introduces expanded system boundaries which reduced the level of incompleteness, a previous limitation of process-based LCA.
Results
Using the 2014 UK energy mix, composting achieved the best score for seven of 14 environmental impacts, while AD scored second best for ten. Incineration had the highest environmental burdens in six impacts. Uncertainties in the LCA data made it difficult determine best treatment option. There was significant environmental impact from capital goods, meaning current treatment facilities should be used for their full lifespan. Hybrid IO LCA’s included additional processes and reduced truncation error increasing overall captured environmental impacts of composting, AD, and incineration by 26, 10 and 26%, respectively. Sensitivity and Monte Carlo analysis evaluate the methods robustness and illustrate the uncertainty of current LCA methods. Major implication: hybrid IO-LCA approaches must become the new norm for LCA.
Conclusion
This study provided a deeper insight of the overall environmental performance of downstream food waste treatment options including ecological burdens associated with capital goods.
Keywords
Anaerobic digestion Incineration Composting Food waste Hybrid life cycle assessment Capital good
Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression
BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p
Hatchery production of penaeid prawn seed: Penaeus indicus
The different techniques of hatchery production of penaeid
prawn seed that have been developed in different countries of the
world are generally capital intensive, involving high technology. A
developing country such as India with limited resources needs a
low-cost technology which is simple enough to be used by semiskilled
workers. The technology presented here is based on a
multi-disciplinary research experience from experimental to pilot
stage, on induced breeding of marine prawns and hatchery production
of penaeid prawn seed during the past decade. It is
developed by utilising the locally available resources and materials
and is appropriate to the socio-economic conditions prevailing
along our coast
Game Plan: What AI can do for Football, and What Football can do for AI
The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented
analytics possibilities in various team and individual sports, including baseball, basketball, and
tennis. More recently, AI techniques have been applied to football, due to a huge increase in
data collection by professional teams, increased computational power, and advances in machine
learning, with the goal of better addressing new scientific challenges involved in the analysis of
both individual players’ and coordinated teams’ behaviors. The research challenges associated
with predictive and prescriptive football analytics require new developments and progress at the
intersection of statistical learning, game theory, and computer vision. In this paper, we provide
an overarching perspective highlighting how the combination of these fields, in particular, forms a
unique microcosm for AI research, while offering mutual benefits for professional teams, spectators,
and broadcasters in the years to come. We illustrate that this duality makes football analytics
a game changer of tremendous value, in terms of not only changing the game of football itself,
but also in terms of what this domain can mean for the field of AI. We review the state-of-theart and exemplify the types of analysis enabled by combining the aforementioned fields, including
illustrative examples of counterfactual analysis using predictive models, and the combination of
game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude
by highlighting envisioned downstream impacts, including possibilities for extensions to other sports
(real and virtual)
- …