4,748 research outputs found

    Single- and dual-carrier microwave noise abatement in the deep space network

    Get PDF
    The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given

    Study of perturbed periodic systems of differential equations - The Stroboscopic method

    Get PDF
    Stroboscopic method for solving perturbed periodic systems of differential equation

    A comprehensive review of reported heritable noggin‐associated syndromes and proposed clinical utility of one broadly inclusive diagnostic term: NOG ‐related‐symphalangism spectrum disorder ( NOG ‐SSD)

    Full text link
    The NOG gene encodes noggin, a secreted polypeptide that is important for regulating multiple signaling pathways during human development, particularly in cartilage and bone. The hallmark of NOG ‐related syndromes is proximal symphalangism, defined by abnormal fusion of the proximal interphalangeal joints of the hands and feet. Many additional features secondary to NOG mutations are commonly but inconsistently observed, including a characteristic facies with a hemicylindrical nose, congenital conductive hearing loss due to stapes fixation, and hyperopia. The variable clinical presentations led to the designation of five different autosomal dominant syndromes, all subsequently found to have resulted from NOG mutations. These include (1) proximal symphalangism; (2) multiple synostoses syndrome 1; (3) stapes ankylosis with broad thumbs and toes; (4) tarsal‐carpal coalition syndrome; and (5) brachydactyly type B2. Herein, we review the phenotypic features associated with mutations in the NOG gene, demonstrating the overlapping characteristics of these syndromes. Due to the variable phenotypic spectrum within families and among families with the same mutation, we propose a unifying term, NOG ‐related symphalangism spectrum disorder ( NOG ‐SSD), to aid in the clinical recognition and evaluation of all affected individuals with these phenotypes. These NOG gene variants are available in a new locus‐specific database ( https://NOG.lovd.nl ).Hum Mutat 32:1–10, 2011. © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87082/1/21515_ftp.pd

    New estimates of pan-Arctic sea ice-atmosphere neutral drag coefficients from ICESat-2 elevation data

    Get PDF
    The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization that links sea ice-atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Though ICESat-2 is unable to resolve as well as airborne surveys, it has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA's Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from November 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above 2.0×10-3, while most of the multiyear ice portion of the Arctic is typically around ∼1.5×10-3

    Morphological Classification of Local Luminous Infrared Galaxies

    Get PDF
    We present an analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8μ\mum). Our classification is based on the calculation of GiniGini and the second order of light (M20M_{20}) non-parametric coefficients which we explore as a function of stellar mass (MM_\star), infrared luminosity (LIRL_{IR}) and star formation rate (SFR). We investigate the relation between M20M_{20}, the specific SFR (sSFR) and the dust temperature (TdustT_{dust}) in our galaxy sample. We find that M20M_{20} is a better morphological tracer than GiniGini, as it allows to distinguish systems formed by double systems from isolated and post-merger LIRGs. The multi-wavelength analysis allows us to identify a region in the GiniGini-M20M_{20} parameter space where ongoing mergers reside, regardless of the band used to calculate the coefficients. In particular when measured in the H-band, this region can be used to identify ongoing mergers, with a minimal contamination from LIRGs in other stages. We also find that while the sSFR is positively correlated with M20M_{20} when measured in the mid-infrared, i.e. star-bursting galaxies show more compact emission, it is anti-correlated with the B-band based M20M_{20}. We interpret this as the spatial decoupling between obscured and un-obscured star formation, whereby the ultraviolet/optical size of a LIRGs experience an intense dust enshrouded central starburst is larger than in the one in the mid-infrared since the contrast between the nuclear to the extended disk emission is smaller in the mid-infrared. This has important implications for high redshift surveys of dusty sources. [abridged]Comment: ( 18 pages, 12 figures, Accepted for publication in A&A

    Connections between CHFR, the cell cycle and chemosensitivity Are they critical in cancer?

    Get PDF
    Commentary to: Alternative efficacy-predicting markers for paclitaxel instead of CHFR in non-small cell lung cancer Masafumi Takeshita, Takaomi Koga, Koichi Takayama, Tokujiro Yano, Yoshihiko Maehara, Yoichi Nakanishi and Katsuo Sueish

    New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data

    Get PDF
    The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization that links sea ice–atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Though ICESat-2 is unable to resolve as well as airborne surveys, it has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA's Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from November 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above 2.0×10-3, while most of the multiyear ice portion of the Arctic is typically around ∼1.5×10-3.</p

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data
    corecore