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1. INTRODUCTION 

The exact statement of hypotheses and results are given in the following 
sections. Here, we will discuss the problems in general terms. The class 
of differential equations which will occupy our attention is of the form 

(1.1) UC = Fb, E, t) 

where u is an N-vector, E a small parameter and t the independent vari- 
able. The function F(u, E, t) is assumed to be periodic in t of period 
T > 0 for all u and s and the unperturbed equation 

(1.2) 2’ = F(z, 0, t) 

is assumed to have the property that all its solutions are periodic of per- 
iod T. 

If u(x, E, t) is the solution of (1.1) with initial condition u(x, E, 0) = x, 
then we define the transformation h(x, E) with the property h(x, 0) = x by 

(1.3) h(x, E) = u(x, E, T). 

Since F(u, E, t) is periodic in t of period T, it follows that the 
iterates of the transformation h(x, E) yield a sequence of points which are 
the values of u(x, E, t) at positive integral multiples of T. A fixed point 
of h(x, .a) corresponds to a periodic solution of (1.1) of period T and a 
fixed point of the iterate h(+x, E) corresponds to a solution of period 

nT (not necessarily the minimal period). In fact, the transformation h(x, s) 
determines virtually all the important qualitative characteristics of the 
solutions to (1.1). 
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An autonomous system of the form 

(1.4); V’ = .dv, e) , dv, 0) = 0 

with the property that the solution v(x, E, t), with initial condition 

v(x, E, 0) = x, satisfies v(x, E, T) = h(x, E) will be called a strobo- 
scopic differential equation of the system (1.1). Thus, the solutions of 
(1.1) and (1.4) with the same initial conditions at t = 0 coincj.de when 

t is an integral multiple of T. The principal problem of our investigation 
is the determination of a stroboscopic differential equation of (1.1) and a 

transformation CJI(Y, E, t) with the properties 

cp(Y, E, 0) = y , 

CP(Y, E, t+T) = cp(y, E, t) , 

such that if v(x, E, t) is a solution to (1.4) then 

u = cpb(x, E, t>, E, t> 

is a solution to (1.1). 

The "stroboscopic method" was invented by N. Minorsky, see rl, pp. 39O-hl'jJ, 
in collaboration with M. Schiffer. Briefly, it takes the following form. 

Let (1.1) be of the type 

(1.6) UC = &f(U, E, t) * 

Then, in place of (1.4), the averaged equation 

(1.7) 
I 

v* = E F(v) 
T 

F(v) = $ I f(u, 0, t)dt 
0 
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is used. Questions of the existence and stability of periodic solutions with 
period T to (1.6) can then be formulated in terms of the behavior of the 
solutions to (1.7). In our treatment here, we seek convergence of a series 
in which the first term is the above averaged equation. Yorinaga [2] and 
Urabe r3] have elaborated on Minorsky's method and have thereby placed it on 
a more rigorous footing. 

Sharshanov r4], [5] and Urabe [31i r6], [71 have considered these problems 
without dependence on E. In PI, r51, VI- and [71, they start with the 
transformation h(x) given. In r3] the starting point is a periodic non- 
autonomous system. They give sufficient conditions for the existence of an 
analytic autonomous system. By extending our system to a system of one 
higher dimension we can transform our problem into their setting. But thei.r 
hypotheses exclude the function F and h which satisfy our conditions. 
The principal difference is that for small E, h(x, s) is a small perturbation 
of the identity transformation but this case is specifically excluded in 
their hypotheses. 

In section 2, we give the formal computation of the stroboscopic differential 
equation and the transformation cp(Y, EY t>. In section 3, certain special 
systems are investigated for which we not only give exact convergence theorems 
for the stroboscopic representation of the solutions but also more specific 
information regarding the form and qualitative behavior of the solutions. In 
section 4, the formal part of the general theory is developed and in section 'j 
a convergence theorem is stated and proved. 

During the early stages of the investigation, some casual discussion of per- 
turbation theory with a physicist colleague resulted in the resolution of a 
mathematical question arising in Quantum Chemistry. Although the subject 
matter of the subsequent publication is peripheral to the contract study, an 
acknowledgement was included and a reprint of the paper is reproduced as an 
Appendix to this report. 
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2. STROBOSCOPIC REPRESENTATION 

We rewrite (1.1) with H-vector y in place of u: 

(2.1) Y’ = HY, E9 t> * 

Our interest is in real solutions to (2.1) and consequently w.e always assume 
that F is real when y, E and t are real. IIowever, we introduce assump- 

tions over complex domains in y and E in order to utilize analytic expan- 
sion theorems. Let EN be N-dimensional (real) Euclidean space and let 

CN be N-dimensional complex vector space. Thus CN is homeomorphic to 

EFN. Let H be an open region of CN+l which includes all points (xl, . . . . 

xN, 0) where the x. are real. 1 We assume that F(y, E, t) i.s continuous 

in the (N+2) variables (y, E, t) for all (y, E) E II and t E El. Also, 
for each fixed t, t E El, we assume that F is analytic in (y, E) over IT. 

These conditions imply the local existence and uniqueness of the solution 

Y(X, E, t) with initial condition y(x, E, 0) = x, (x, E) E H. For some 

fixed T > 0 we assume 

(2.2) F(y, E, t+T) = F(Y, E, t>, (Y, E) E 11, t E El. 

Finally, we assume that the unperturbed equation 

(2.3) z' = F(z, 0, t) 

has the property that all solutions z(x, t), with z(x, 0) = x, 
xeH = 0 TX E CNl(x, 0) e H] are periodic of period T, i.e. 

(2.4) z(x, t+T) = z(x, t), x E Ho, t E E1 

In particular, z(x, t) E Ho for x E Ho, t E El. 



A problem of interest by itself is to find additional assumptions which may 
be imposed on (2.3) directly in order to insure that all solutions are peri- 
odic of period T. If we assume that each solution z(x, t) may be contin- 

ued to all t, then one such condition is the existence of a real constant c 
such that 

F(z, 0, c+t) = - F(z, 0, c-t) 

for all 2 E Ho, t E El. This is a generalization of a known result for 

linear equations, see Epstein [8, p. 691-J. To prove this assertion, let 

z(t) be any solution to (2.3), then z(2c-t) is also a solution and it has 

the same value as z(t) at t = c. Consequently, by uniqueness, 

z(t) = 2(2c-t) or z(c-t) = z(c+t). On the other hand, because of (2.2), 

q(t) = z(t+T) is also a solution and 

dc - $) = z(c + ;, = z(c - ;, 

and again, by uniqueness, q(t) = z(t) = z(t+T). Another condition for all 
solutions to be periodic will be given in Section 3. 

The condition (2.4) enables us to perform a reduction of (2.1). From the 
analytic expansion theorem, see [g, p. 361, 2(x, t) is continuous in (x, t) 
over Ho x E1 and for each t, t E El, z(x, t) is analytic in x over 11 0' 
Each element of the Jacobian matrix 

Jb-, wx,t> t> =s 

has these same properties; the continuity following from Cauchy's integral 
formula for a derivative. BY @.3), Jk t> satisfies a linear matrix 
differential equation in the independent variable t and J(x, 0), x E Ho, 
is the identity matrix. Consequently, J(x, t) is non-singular for all 
xeH o, t E 2 (see Bellman [lo, p. lo]). There exists a countable collection 
of open sets G, contained in CN such that Ho = U Gn and such that the 
closure G, is compact and &-, C HO. Due to (2.4),nthe set An = 



is compact and An c Ho. Consequently, there exist 

Sn = FE 1 Is/ < 6,] then A, x Sn c H . Now let 

6, > 0 Such tttat if 

(2.5) G = ,u (Gn x Sn) 

where G is then an open subset of H and Ho x TO] c C . Consider the 
function 

f(u, E, t) = J-l(u, t> rF(du, t), E, ‘d - Fb (u, t>, 0, t1-l 

which has the properties that f(u, s, t) is cpntinuous in- (u, e, t) for 

aI-1 64 E)EG and teE' and for each t, f is analytic in (u, e) over G. 

The differential equation 

(2.6) U’ = fb, E, t> 

has all the properties imposed on (2.1), where II is replaced by the sub- 

region G, and in addition 

(2.7) f(u, 0, t) = 0 , u E Ho, t E E' . 

If u(x, s, t) is the solution of (2.6) with the initial condition 

u(x, E, 0) = x9 (x, s) E G, then y = z(u(x, s, t), t) is the soluti.on to 
(2.1) with the same initial condition. 

Let S be an arbitrary compact set in Ho. Then, due to (2.7) and the 
periodicity condition of f(u, s, t) in t, we conclude that for 1~1 suffi- 

ciently small the solutions &b E> t) with xeS may be extended to an 
interval in t which includes ro, T]. Consequently, by the analytic expan- 
sion theorem, the transformation function h(x, s) = u(x, E, T) is defined 

and analytic over an open subset V of G and such that Ho x {O] c V. The 

transformation h(x, s) has the property that h(x, 0) = x for x E Ho. It 

may be observed that the transformation function y(x, E, T) of (2.1) is 

identical to h(x, s) over V since y(x, s, T) = z(u(x, E, T), T) = 

z(u(x, E, T), 0) = u(x, E, T). 

6 



We,now define the stroboscopic representation of the solutions to (2.6). 
Suppose there exist N-vector valued functions g(x, s), C&X, E, t). where 
X is an N-vector, with the following properties.. There exists an open 

subset Go of G such that Ho x FO] c Go and g(x, s) is analytic in 
(x, E) Over Go. f%S0 

(2.8) 

The functions c&x, E, t) 
and t E E1 and for each 
over GO* In addition 

(2.9) cp(x, E, t+T) 

6=-o) Cp(X, E, 0) 

(2.11) dx, 0, t> 

gbb 

and 

t, t 

O)=O, xeHo. 

a 
2 5 

are continuous in 

EE, these functions 

1 
= &, E, t> , (x, E) E Go, t E E-, 

= x 9 (x, d E Go , 

(x9 E, t) for (x,.5) e Go 
are analytic in (x, E) 

= x , 6% t) E Ho x E1 . 

Finally, if v(x, s, t) is the solution to the autonomous equation 

(2.12) V' = dv, E:> 

with initial condition vbb E, 0) = x, (x, E) E Go, then 

(2.13) u(x, E, t> = cp(v(x, E> t>, E, t) 

is the solution of (2.6) with the same initial condition. 

As in the discussion of the transformation function h(x, s) for (2.6), the 
condition (2.8) implies that v(x, E, T) is defined and analytic in (x, s) 
over some open subset V. of Go and such that Ho x {O] c Vo. The above 

conditions then imply that h(x,e) = v(x, E, T) over V. and consequently 

(2.12) is a stroboscopic differential equation of (2.6) and therefore also 
of (2.1). 

We will show that if there exists a stroboscopic representation of the solu- 
tions of (2.6), as defined above, then the functions g(x, s) and C&X, E, t) 
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are uniquely determined. We do this by exhibiting an explicit calculation of 
these fulictions in terms of f(u, E, t). 

Substitute (2.13) into (2.6), d enoting the Jacobian matrix of ~(x, E, t) 

with respect to x by cp, 1 (x, E, t>, we have 

(2.14) qhl (V, E, t> dv, d + 2 (‘4 E, t> = f($‘h E, t>, E, t> - 

We now define open subsets Gi(i = 1, 2, 3) of Co such that Go =) Cl 3 C2 3 C:, 
J 

and % contains Ho x fob Introducing the dummy variable y, we wi.ll show 

that 

(2.15) cPjl (Y, E, t) dY, E) + 2 (Y, E, t) = f(dY, E, t), ‘E, t) 

is an identity for all t E E1 and all (y, E) E G . 3 For each t, t c l?, tile 

left-hand side of (2.15) is analytic in (y, E) over Go. Due to tile propcr- 

ties of cp(y, E, t), there exists an open subset Cl of Co such tl!at 

MY, E, t), E) E: G for all (y, E) E Gl and t E El. Consequently, for 

each t, t E El, both sides of (2.15) are analytic in (y, E) over Cl. The 

existence of G2 and G , 3 
defined below, follows from arguments similar to 

those applied to h(x, E) for equation (2.6). Let G2 be an open subset of 

Gl, such that if (x, E) E G2, then v(x, E, t) may be extended to all t in 

[O, T] and (v(x, E, t), E) E Cl for all t E [O, T]. Let G 3 be an open 
subset of G 2, such that if (x, E) E G3, then v(x, E, t) may be extended 
to all t in r-T, T] and (v(x, E, t), E) E G2 for all t E r-T, T]. NOW 
let (y, E) E G3 and toE [0, T]. If x = v(y, E, -t,), then (x, E) c G2. 
We apply (2.14) to the solution v(x, E, t) and observe that v(x, E, to) = y 
since the equation (2.12) is autonomous. Thus (2.15) is an identity for 

(Y, d E G3 and t E [O, T]. But since each side of (2.15) is periodic in I; 

of period T, this result may be extended to all t E El. 

From the properties of f, g and cp we have 

(2.16) f(Y, E, t> = f Enfn (Y, t> 
n=l 

8 



(2.17) 

dY, E) = 7 En g,(Y) 
n=l 

03 
C&Y, EJ t> =Y+ En yJJY> t> 

where the f n and %l are periodic in t of period T and ~(y, 0) = 0, 
n = 1, 2, 3 . . . . 

In order to expand the right-hand side of (2.15) as a power series in E , 
we need certain preliminary expansion formulas for analytic functions. Some 
of these will be used in later sections. Let x, JJ be N-vectors with com- 
ponents x = (x(l), . . . . x(~)), 'Q = (I('), . . . . lCN)) and let f(x) be a 
N-vector valued function of x. A known result is 

(2.18) f(x+Tl) = f ;: fk(X, T-j> 
k=O 

where N 

fk(x' -d = c 
p 

. . . Jik) akf(x) k = 1,2;... 
a, (ill . ..a. ik 

il,...,ik=l 

Now let 1 = I EJTlj , 
j=l 

9 



= 

N 

T -. 
il,,...,ik=l 

co 
x ji+...+jk 

E 
(id (ik) akf(x) 

n. 

k=l J1 
. ..?-I. 

j,, . . ..j Jk &(il)...ax(ik) 

E 
jl+. . . +jk 

jl,...,jk=l 

where 

N 

fk(x, njl, " ') njk) = 7 
(ill (ik) akf(x) 

n. 
il,.",ik $h "' Jk ax(il) . . . ax(ik) 

This yields 

(2.20) fk(x, f Ej?jj) = f Ev 7 fk(x’ njl, * * ‘, ‘jk) 

j=l v=k j,+. . . +j,= v 

for k = 1, 2, 3 . . . . Throughout this paper a summation symbol of the type 

x will be used to denote a summation over all k-vectors (j,,...,jk) 

jl +. . .+jk=v 

whose elements are positive integers such that j, + . . . + j, = v. 

10 



From (2.18) and (3.20) we have 

03 V 

(2.21) f(x + 1 Ebj) = f(x) + f I Ev 1 
T;! fk(xJ 

j=l v=l k=l j,+. . . +jk=v 

Consider the N-vector valued functions of the form 

co 
h(x, E) = X + 

7 
Enhn(X) 

n=l 

\ 

co 
ah E) = X + En&(X) 

n=l 

where h,(x) and A,(x) are analytic and n 

A, = (a(l), ,.., . . . . JZ~)). Then 

h = (h(l), . . . . t'ljN)) , 
. n 

n 
m 

h(Ab, E), E) = X + EnAn + 
n=l 

f Enhn 6 + f Eb,(X;) 

n=l j=l 

From (2.21), we have 
m 

h,b + Ebj(X)) = h,(x) 

j=l 

where 

k=l jl +...+j =v k 

)) = f qx 
aj, 

il,..., ik=l 

(ik) akhn(x) 
)s"Jjk Cx) 

ax( ii). . . axcik) 

11 



Let 

Lnv (4 = ,F ;f . y Gk(X, Ajl(x), * l ’ 9 .4jkCx) 1 

k=l jl +...+j =V k 

then,after some manipulation, we obtain 

(2.23 > h(A(x, E ), E) = X + 7 En r.i$,bd + h,(X)3 

n=l 

+ 7 En y Ln-v,v(x) 
n=2 v=l 

Returning to (2.15), it is s'een from (2.16) and (2.17) that for fixed 1; the 

functions J(Y, E) = cp(Y, E, t> and h(y, E) = y + f(y, E, t) have ttre same 

form as (2.22). Hence h(cp(y, E, t), E) can be obtaj.ned from (2.23) and 

then f(cp(y, E, t), E, t) = h( cp(y, E, t), E) - cp(y, E, t). This yields 

c2.z4) f(rp(Y, E, t >, E, t ,=y +$Y, t> 
n=l 

+ f En y ~n-v,v(Y, t> 
n=2 v=l 

where 
V 

(2.25) +,,(Y,t) = r ;: 7 

N 

7 
(il) bk) 

(pj, iYJt)*"~jk(YJt) 
akfmcy, t ) 

(' 
k=l jl +...+j =v i k i =l l>"'J k 

ayllL.ay(ik) 

12 
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We now expand the left-hand side of (2.15) and for the first term we have 

(2.26) (FJY, E, t> dY, E) = 1 + f En(+‘n,l(Y, t)] T Erngm(Y > 

n=l m=l 

cn n-l 
= 

c Engn(d + f c 
n 

E cp,,,(Y, t)g,+CY) 
n=l n=2 v=l 

Substituting (2.24) and (2.26) into (2.15) we get 

aY 
at (Yd > = fl(Y, t> - G,(Y 9, 

a% 
n-l 

at (Yd = f,(Y, t> + 7 $-v,v(Y't) 
v=l 

n-l 

-g,(Y) - 7 ‘p,,1(y1 t> i%,+(Y) 
v=l 

n = 2, 3, 4, a-- 

The condition that cp,(y, t) is periodic in t of period T uniquely deter- 
mines g,(y) and we have 

f gl(d = $ J’ fl(y, t)dt 

(2.27) 
0 

T 

g,(y) = $ J- B,(y, t)dt, n = 2, 3, . . . 
0 



where 
n-l 

B,(Y) t > = f,(y, t > + 1 I n-v,v(Y’ t, 
v=l 

n-l 

-7 TV ,(Y, t> 6,+ (Y> . 
v=l ' 

Finally, the initial condition cp,(y, 0) = 01 uniquely determines (pri(y, t) 

and we have 

t 

(2.28) 

VJ~(Y, t> = j- rflb, d - g(y)] dT 
0 
t 

CP,(Y, t) = J‘ [B,(Y, 7) - g,(y)] dT, n = 2, 3, - 
0 

It may be observed that if we define gn and (p, by (2.27) and (2.28), then 
from the assumptions on f(y, E, t) the function g,(y) is analytic in y 

over HO and, for each t , cp,(y, t) is analytic in y over lIo. Also 

(P, a,nd its derivative with respect to t are continuous in (y, t) over 

Ho x El. 

In an applied problem yielding (2.1), the solutions z(x, t) o-f (2.3) are 
quite likely known so that (2.6) is explicitly obtained. One then computes 

Vl' .*a> (P, and gl, -a-> gn+l from (2.27) and (2.28), i.e. the g's are com- 
puted to one higher order than the q's. This is due to the fact that 
accuracy is more important in (2.12), which in general has non-periodic solu- . 

tions, than in the expansion of cp in (2.17) where the 'p, are periodic in t. 

One then solves (2.12) on a computing machine, where a large step size is 

feasible due to (2.8) and the fact that (2.12) is autonomous. For long -Lime 
intervals one would expect greater accuracy by this method than one would ob- 

tain by solving (2.1) or even (2.6) on the machine since "short" period oscilla- 
ations occur due to the presence of t. 

14 



3. SFJXIAL EQUATIONS 

In this section we will consider three special classes of equations of the 
form (2.6) and their stroboscopic representations. 

Let A(t) be a real N x N matrix continuous and periodic in t of period 
T> 0. Consider the vector-matrix equation 

(34 u' = E A(t) U , (U, E) E G = ‘2 
N+l 

From (2.27) and (2.28), it follows by induction that g,(y) and cp,(y, t) 
have the form g,(y) = D,y and cp,(y, t) = G&(t)y where Dn .is a constant 
matrix and g(t) is a periodic matrix in 1; of period T and has a con- 
tinuous derivative. The D, and Qn(t) are given by 

T 

(3.2) 

! 

Dl = $ j' A(t) dt 
0 

Dn = $ 
n-l 

A(t) &II+) - 7 Q,, (t> Dnmv dt 1 
v=l J 

n = 2, 3, s-s 

and 

i 

Qdt 
(3.3) 

QrP 

t 7 
= J rA(d - Dl 

0 

t 

dT 1 

> ‘> = j- rA(T)Q&T 
0 

-1 Q,,(T) DnDv-Dn 1 dT 
n-l 

15 
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It is not obvious from the calculations (3.2) and (3.3) that the series 
co 

dY, E) = 1 snDny 
n=l 

(3.4) 

n=l 

converge for E # 0. However, we will now show that this is the case. 

From the theory of linear equations (see [lo, Chapter l]), the solutions 

u(x, E, t)of (3.1) exist for all t and have the form 

(3.5) 4x, E, t) = Y(E, t>x , Y(E, 0) = I 

where Y(E, t) is an N x N matrix. From the analytic expansion theorem, 

for each t, t E El, Y(E, t) is analytic' in E over Cl . In particular, 

since Y(0, 1;) = I, we have 

(3.6) Y(E, T) = I + EnAn , EEC 1 

where A, (n = 1, 2, 3 . ..) is a constant matrix. For the norm of an 11' x I\j 

matrix A = [a,,] with complex elements, we choose II4 = N max Iaij 1. Tl!en 

II4 5 Ml PII * 

The logarithm of a matrix and the exponential matrix are defined by power 
series expansions. In particular, for a matrix of the form I + B we use 

B2 B3 log (I + B) = B - 2 + 3 - . . . 

16 



There exists 6 > 0 such that 
0) 

11 1 snAn 11 < 1 
n=l 

forall eeC1 with ]el<6. The matrix D(E) given by 

(3.7) D(e) = $ log (I + 1 enAn) 
n=l 

is uniquely defined and analytic in E over sg = {e E CL 1 1E1 < 6 3. Also, 

D(O) is the zero matrix and D(E) is real for real E E S6. We then have, 

by (3.7) and (34, 

(3.8) Y(E, T) = e D(dT , E E S& 

and also the identity 

(3.9) Y(E, t+T) = Y(E, t) Y(E, T) , (E, t) E C1 x E1 

which follows in the linear theory from the periodicity of A(t). Now define 

d”(Y, d = D(E) Y , 

(3.10) 
$'(y, E, t) = Y(E, t)e-D(E)t y . 

which for each t, t E El, are analytic in (y, E) over CN x sg. The function 
$ satkfies (2.9),, (2.10) and (2.11) where the property (2.9) follows from 
(3.8)and (3.9). Now let v(x, E, t) = eDcEJtX be the solution of v' = D(e) v, 
then 

4x, E, t) = cp"‘(v(x, E,t) ) E, t) 

is the solution (3.5) of (3.1). Thus, the functions in (3.10) satisfy all 
the properties for the stroboscopic representation of the solutions to (3.1) 
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and therefore the corresponding functions in (3.10) and (3.4) must be identi- 
cal for all t E E1 and all (y, s) E Go = CN x S6. 

We observe that even for linear equations there may be restriction on IsI 
for the stroboscopic representation. The Floquet theory states that 
the solutions of 

U’ = A(t>u , A(t + T) = A(t) 

may always be expressed in the form 

u(x, t) = Q(t>eDtx , Q(O) = I 

where Q(t) is periodic of period T and D is a constant matrix. 13u-t .it 
is not always possible to choose D to be a real matrix (see rg, p. 811) . 
and consequently, in this case, there must be a restriction on I4 for the 
stroboscopic representations of the solutions to (3.1). 

Next we consider equations of the form 

(3.11) U’ = E f(t) F(u) 

where f(t) is a continuous, periodic scalar function of t of peri.od T > 0 

and F(u) is an N-vector valued function analytic over an open set I-IO C CN. 

Thus, for each t, the right-hand side of (3.11) is analytic in (u, e) over 

G = Ho x Cl. Let w(x, t) be the solution of the initial value problem 

(3.12) W’ = F(w) , w(x, 0) = x. 

It is known that there exist N-vector valued functions H,(x) (n = 1, 2, . ..) 

which are analytic on HO' and for each x0 E Ho there exists 6(x0) > 0, 

and p(xo) > 0 such that 
03 

(3.13) w(x, t)= x+ r tnHnbd 
n=l 

converges for I/x-x0/I < p(x,) and ItI < 6(x0). 
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The functions H,(x), with q(x) = F(x), may be calculated from F(x) by 
successive application of a differential operator. Since (3.12) is autono- 
mous, if It& It,1 and It, + $1 are all less than 6(x) then 

(3.14) &4x, t,), t2> = w(x, t1 + t2) 

Now let 

(3.15) 

T 
1' m = 
T 0 J f(T) dT 

,t 
a(t) = J f(T) d'r - mt 

0 

M = sup Idt > I 
O<t<T - - 

where a(t) is periodic of period T. We define 

(3.16) 
03 

cp(Y, E, t) =Y + IT ena(tjn H,(Y) - 
n=l 

Let Go = {(x, e)~ CN+l I x E Ho, 1~1 < 6(~)/~}, then, by the remark above, 

GO is an open subset of CN +l and for each t, tEE', rp is analytic in 

(Y, E) over Goa 

Consider 

(3.17) V' = E m F(v) 

and let u(x, E, t) and v(x, E, t) be solutions of the initial value problems 

dx, E, 0) = v(x, E, 0) = x for equations (3.11) and (3.17) respectively. We 
will show that 

(3.18) 4x, E, t> = dv (x, E> t), E, t). 
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First, it is easily seen that 

,t 
u(x, E, t> = w(x, E J f(T) dd , 

v(x, E, t) = w(x, E m t). 

Consequently, for (x,E) E GO and 

IEmtl < 6(x) , f(ddT1 < h(x) , 
0 

we have, from (3.14), 

v(v(x, E, t>, E, t) = w(v(x, 5 t>, E a(t)> 

3 
= hdx, emt), E a(t)) = w(x, E J f'(T) dd 

0 
= u(x, E> a, 

which proves (3.18). 

The relations g,(y) = m F(Y .>J g;:(Y) = O b > 1 ) and CP,(Y, t> = a(t)nIrn(y) 
must follow from (2.27) and (2.28). However, in this case, it is a more diffi- 

cult route. 

If m = 0, then all solutions u(x, E, t) of (3.11) with (x, E) E Go are pcr:i.- 
odic of period T. However, solutions with (x,.:~E) E G and (x, E) a boundary 

point of Go need not be periodic. For example, consider the simple scalar 

equation 

u’ = E(sin t) u* 

whose solutions are 

l-h, E> t) = 
X 

1-a (1-cos t) * 
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IIere, C = C2, M = 2, m = 0, 6(x) = 1/1x1, and consequently 
Go = rb, E) E c2 1 IX&l c l/23. The real solutions wi.th x E >, l/2 go to 
infinity in finite time. 

Finally, for our third class of equations we will restrict the discussion to 
real variables. Consider 

(3.19) u’ = E f(u, t) u 

where f(u, t) is a scalar function continuous in (u, t) and periodic in t 
of period T > 0. Also for all t, f(u, t) is analytic in u over EN and 

also homogeneous of degree P # 0 in u, i.e. mu, t) = Pf(u, t). 

We define the scalar function a (x, E, t), with a(x, E, 0) = 1, such that 

(3.20) u(x, E, t) = a(x, E, t>x 

This leads to the scalar equation 

a’ = El2 p+1 f(x, t) 

and consequently 

(3.21) 4% 

Now let 
T 

b(x) = $ j* f(x, T)dT, 
0 

then b(hx) = A%(x) and the equation 

(3.22) v’ = E b(v) v 
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is of the same type as (3.19) and therefore 

(3.23) v(x, E, t > = 
1 

i-1-p &(x)t]l’p 
X 

We observe that u(x, E, T) = v(x, E, T). Now define 

cp(Y, E, t> = U(V(Y, E, 4, E, t> 

then using the homogeneity of f(u, t) and (3.2O), (3.21) and (3.23) we find 

cp(Y, E, t) = 1 

i-1 + dY,t)ifi 
Y 

where ,t 
dy, t> = b(y) t - J fb, T> dT, 

0 

dy, t+T) = qb, t>. 

Also, in the same way, one verifies that 

J-h, EY t> = dv(x, E, t>, &, t>* 

If G is an open subset of EN with compact closure C? and 

M = sup ]q(x, t)l, x E G, 0 5 t 5 T, 

then cp(y, E, t), for each t, is analytic in (y, E) for y E G, 1~1 < l/M]~l. 

Let h(x, E) = v(x, E, T) where v(x, E, t) is given by (3.23), then if we 

expand 

hb, E) = x + 
7 Enhnbd 

n=l 
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we find hi(x) = T b(x)x. Using the homogeneity of b(x), one may verify 

that 

(3.2ld ah(xJ ') = h (h(x, E)) 
a, 1 . 

One may also verify that (3.24) is valid for the class (3.11). In Section 4 
we will show that (3.24) is a necessary and sufficient condition for the 
function g(y, E) in the stroboscopic equation 

V' = dv, 4 

to be linear in E. 
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4. GENERAL THEORY 

Consider the initial value.problems 

(4.1) U' = f(u, t) , u(x, 0) = x ) 

(4.2) V' = g(v) , v(x, 0) = x . 

where f(x, t) is a continuous function on EN+1 into 8 and g(x) is a 
continuous function on EN into N E . If f(u, t) is periodic in t of 

period T > 0, then Urabe [3] has shown that the existence of an autonomous 
system (4.2) whose solutions satisfy v(x, T) = u(x, T) implies the existence 
of a function cpbb t) which relates the solutions according to 

u(x, t> = cp(vbb t>, t> 

and which is periodic in t with period T. We shall repeat part of Urabe's 
proof here with some modifications. 

It is required that the solutions of (4.1) and (4.2) be unique and exist for 

all t. These hypotheses, which are imposed here for the sake of' simplicity, 

yield a global result. They can be modified to produce a local result. As 

is well known, v(x, t) is a dynamical system; in particular, v(v(x, t),T) = 

v(x, t+7) for all x e EN, t, 7 E El. Suppose there exists a continuous func- 

tion cp(x, t) on E N+l into EN such that 

(4.3) J-G, t> = cp(V(XY t>, t> 

Setting x = v(y, -t) we obtain 

(4.4) dY, t> = UMYY 4, t> 
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Conversely, if cp(y, t) is defined by (4.4), then (4.3) follows by direct 
substitution. Hence there exists a unique function cp(y, t) which satisfies 

(4.3). 

If f(x, t) is periodic in t with period T, and if v(x, T) = u(x, T), 
then u(u(x, nT),t) = u(x, nT + t) and u(x, nT) = v(x, nT) , n = 0, + 1, 
. . . . Hence v(y, -t-T) = v(v(y, -t), -T) = u(v(y, -t),-T) 
and it follows from (4.4) that cp(y, t+T) = u(v(y, -t), -T + t + T) = cp(y, t). 
Therefore cp(y, t) is periodic in t with period T. Finally, if f(y, E, t) 

and g(y, E) are analytic in (y, s), then so are.the solutions u(x, E, t) and 

v(x, E, t) of (4.1) and (4.2) and hence, cp(Y, E, t), defined by (4.4) is 
analytic in (y, E). 

Thus, in order to show existence of a stroboscopic representation as defirled 
in Section 2, it suffices to show the existence of an autonomous system (2.12) 
whose solutions sa';.isfy v(x, E, T) = u(x, E, T) . Therefore, one approach 
to the problem is to seek hypotheses on u(x, E, T) which imply the existence 
06 a corresponding autonomous system, and then attempt to find conditions on 

fb, E, t) which imply the hypotheses imposed on u(x, E, T). So far as the 
first part of this method is concerned, u(x, E, T) can be replaced by a given 
transformation h(x, E) and the problem can be formulated as follows. Given 

an analytic function h(x, E) which has a local expansion of the form (more 
precise hypotheses to be given later) 

(4.5) 

cm 

h(x, E) = x + T Enhn(x) , 
n=l 

and given T > 0, find an analytic function g(x, E) of the form 
m 

(4.6) dx, E) = IT En&d 
n=l 
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such that the solution 4x, E, t> of the initial value problem 

(4.7) 
(a> v’ = dv, 4 

(b) v(x, E, 0) = x 

satisfies the relation 

(4.8) v(x, E, T) = h(x, E) 

This is the problem to be discussed in the present section and in Section ',. 
This problem has been found to be of interest in itself by others. Sharshanov 

WY CSIY and Urabe [3] have studied the problem and produced sufficient con- 
ditions for the existence of g(x, E). (In their work the parameter E does 
not appear, but the problem discussed here can be put in their setting by 

appropriate modifications.) Rowever, their conditions exclude functions 

h(x, E) of the form (4.5), i.e., small perturbation of the identity. 

Part of the discussion in this section is formal. In particular, in certain 

instances power series are manipulated without justification. Certain r.igor- 

ous results are summarized as lemmas. Throughout this section it will be 

assumed that h(x, s) is an analytic function of (x, E) on G into I? 

where G is a connected open subset of IPI- such that EN x [O] c G. More- 

over, it will be assumed that h(x, 0) = x for all x c EN. It follows 

that given a compact set A c El', there exists 6 > 0 such that A x C-S,&] c G 

and such that the series (4.5) converges uniformly in (x, E) on A x r-6,61. 

The functions h,(x) are single valued analytic functions on EN into . EN 

Proceeding formally, we seek an analytic function g(x, E) of the form (4.6) 
such that the solution of (4.7) satisfies (4.8). Since g(x, 0) =.O, 

v'(x, 0, t) = 0 and hence v(x, 0, t) = x. Thus v(x, E, t) has an expansion 

of the form 

n=l 
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where vn(x, 0) = 0, n = 1, 2, . . . . Referring back to Section 2, v has 
the same form as cp, and g has the same form as f for fixed t. Therefore, 
the expansion of g(v(x, E, t), E) is directly obtainable from (2.2b): 

(x, t> (a> dv(x, E, t >Y E) = T engn(x) + f En f-lvnmv v Y 
n=l n=2 v=l 

(4.10) 
l/ 

(b) v,,h t> = 7 $- 1 
k=l jl+"'+jk=v il,".,ik*l 

:;px,t,. - .vjk(X,t),,(i;) . ..a i id 
N /i \ 

c 
(i,) ak!z (4 

Substituting (4.9) and (4.10) into (4.7) and equating coefficients of like 
powers of E, we obtain 

vi(x9 t> = glCx) 

(4.11) n-l 

$x, t> = g,(x) + I V n-v,v(xy t> , n = 2, 3, . . . 
v=l 

For v = 1, . . . . n-l, the functions Vn ~ ~ _ , (XY t> are expressed in 
terms of vl, . . . . vn 1 and gl, . . . . gnsl. From (4.7b), Vn(x, 0) = 0, 
n = 1, 2, . . . . Hence (4.11) uniquely determines the v_ in terms of the 6,: 

v, (x, t> = t g,(x) L 

(4.12) 

v,bb t '1 = t g,(x) + I J - v,-v,v~% 'i 
n-l t 

> dT, n = 2, 3, soa 

v=l 0 
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Then the gn are uniquely determined by (4.8) and (4.12): 

g,(x) = +, hlbd 

(4.13) n-l .T 

i+) = $ h,(x) - ; r j* v,~v,v (x, T> dT, n = 2, 3, . . . 
v=l 0 

This establishes uniqueness of the function g(x, E). 

It may be noted that the requirement g(x, 0) = 0 is essential to the liri-iquc- 

ness result. For example, let A be a non-zero real constant matrix such 
that eTA = I and let h(x, E) = x for all x E EN. Then g(x, &j = 0 

satisfies the above requirements and so does dx, E) = Ax except for the 

condition g(x, 0) = 0. The requirement of analyticity is also essential 
to uniqueness as is shown by the following one-dimensional example. Let 

T = 2rr and h(x, E) = x + Z'rr&:. Then g(x, E) = E is the unique analytic 
function which satisfies the above conditions. Given any positive integer n, 

let 

dx, E) = E 
1 + En cos 2 

for I E( < 1 (with g(x, 0) = 0). This function has continuous derivatives 

of order cg with respect to x and E. Moreover, it is single valued 

and analytic in both x and E if 0< l&j<l. The solution 0.f the di.ffer- 

ential equation 

v’ = 
E 

1 + &?OS ; 

with initial value x is uniquely determined by the equation 

v - x + Ed+' [sin z - sin :] = Et 
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which is obtained by integration. Since v = x + 2l-r& satisfies this equa- 
tion with t = 2rr, we conclude that v(x, E, 2rr) = x + 21-r& = h(x, E). Thus 
smoothness requirements on g(x, E) short of analy-ticity are not sufficient 
to give uniqueness. 

If (4.6) converges to an analytic function g(x, &), then by known existence 
theorems, the solution v(x, E, t) of (4.7) is analytic in (x, &). Since 
g(x, 0) = 0, it follows that given any compact set A c EN, there ex.i.sts 

6 > 0 such that the solution v(x, E, t) exists for 0 <_ t < T if x E A 
and 1~1 < 6. Then, for (x,&) E A X(-S, 6), the formal manipulations which 
produced (4.12) and (4.13) are justified and it follows that v(x, &, r.r) = 

h(x, E). However, attempts to find sufficient conditions for convergence w'ittl 
the use of (b.lOb), (4.12), and (4.13) have been unsuccessful (except for 
the case where h(x, E) is linear, a case which was dealt with more easily 
in Section 3). If all but a finite number of the functions g,(x) are 0 
for all x E EN, then obviously (4.6) defines an analytic function on all 
of EN+1 . We now present a simple characterization of a very special class 
of functions h(x, d, those for which g,(x) = 0 for n > 2. 

Lemma 4.1. Let h(x, E) be analytic on G into EN, where G is a con- 

netted open set in EN+1 such that EN X (03 c G, and assume h(x, 0) = x 
for all x E EN whereby h(x, E) has a local expansion of the form (4.5). 
Let the functions g,(x) be defined by (b.lOb), (4.12) and (4.13). Then 
g,(x) = 0 for n >_ 2, N x&E, if and only if 

for all (x, E) E G. 

k h(x, E) = hl(hh d) 

Proof: Given (") and given any bounded open set U c El', choose 6 > 0 such 

that U X(-6,6) c G. Then the function v(x, E, t) = h(x, $ t) is defined 

for 0 < t < T , (x, ") E U X (-s,6), V(x, E, 0) = x, v(x, E, T) = h(x, E), - - 

and v(x, E, t) satisfies the differential equation 

V’ = ; hi(v) 
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Hence dx, E> = $ hi(x) satisfies the conditions previously imposed and so 
the coefficients in its expansion in powers of E are uniquely determined by 
(4.12) and (4.13). Therefore g,(x) = $ hi(x) and gn(x) = 0 for n> 2, _ 
x E u. Since U is arbitrary, the result follows for all x E I?!. 

Conversely, if g,(x) = 0 for n >_ 2, x E EN, then the series (4.6) con- 
verges to the analytic function g(x, E) = E g,(x). Given any bounded open 
set U c EN, there exists 6 > 0 such that U x (-6, 6) C C and such that 
the solution v(x, E, t) of (4.7) is defined for 0 5 t <_ T for 

h E) E u x(-6, 6). It then follows from (4.12) and (4.13) that 

vbb E, T) = h(x, E). Let w(x, t) be the solution of the initial value 

problem 

W’ = g,(w) 

?*I 

w(x, 0) = x 

Then v(x, E, t) = w(x,Et). Hence h(x, E) = w(x, ET) and substitution 
into ('") yields 

k h(x, E) = T +(x, E)) 

Setting E = 0 we see that h-+) = T g,(x) and therefore (") holds on 
u x(-w>. But both sides of (") are analytic on all of G and lience (") 
holds on G (e.g., see [ii], pp. 34 and 35). This completes the proof. 

In connection with lemma 4.1 we note that although g(x, E) = egl(x) is 
analytic on all of SN+l if g,(x) = 0 for n > 2, h(x, E) may not be since _ 
the solution of (4.7) may not exist for all t E [O, T]. For example, let 
N = 1 and g(x, E) = EX~. Then 

v(x, E, t> =& 

30 



and 

h(x, E) = & . 

IIence 

G = fb, E)I EX < T] l 

. 
We shall now pursue another approach to the problem wherein the solution ' 

4x, E, t> Of (4.7) is expressed in terms of the iterations of h(x, E) 
without simultaneously constructing the function g(x, E). In addition to 
the hypotheses previously imposed on h(x, E) it will be assumed that 
(h(x, E), s) e G for all (x, E) E G. This implies that the iterations of 
h(x, E), defined inductively by the relations 

(4.14) 
h(x, E, 1) = h(x, E) 

h(x, E, j+l> = h(h(x, E> j>, &), j=l, 2, . . . , 

are analytic in (x, E) on G. It follows that 

(4.15) h(h(x, E, i), E, j) = h(x, E, i+j), i, j=l, 2, . . . 

With the use of (2.23), with cp(x, E) replaced by h(x, E, j), it can be 
shown that the series expansion of h(x, E, j+l), in powers of E has the form 

(4.16) h(x, E, j+l) = x + T snhn(x,j+l), j=l, 2, . . . 
n=l 
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where 

h,(x, I>= h,(x) 

hl( X, j+l) = hi(x) + hl(x, j) , j = 1, 2, .aa 

(4.17) h,(x, j+l) = h,(x) + hn(x, j) + H,(x, j), n = 2, 3, .a. 

(il) . cik) 
hjl (X,J)***lljk (X, j>* 

v=l k=l jl +...+j =V k il,...,ik=l 

akhnmv (x > 
ax . ..a. il @k) 

It also follows from (2.23), with A(x, E) replaced by h(x, E, 
replaced by h(x, E, j) that 

co 

(4.18) 

where 

H,k ,i, j 

P-19) 

n=l 

co 
+ 

I E~H~(x, i, j> , i, 
n=2 

n-l v N 

I=77 51 1 

(il) 
hj, (x, 

v=l k=l jl +...+j k =vi l,...,ik=l 

akhnDv (x, 2 > 

3X( il)...axCik) 

i) and h(x, E: 

h(h(x, E, i), E, j) = x + ? [h,(x, i) + h,(x, j)] 

j=l, 2, . . . 

i> (ik) . . . hjk (x, i 
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From (4.15), (4.16), and (4.18) we obtain the relations 

(a> hl(x,i) + hl(x,j) = hl(x, i+j) 

(kzo) 

(b) hn(x,i) + h,(x,j) + H,(x,i,j) = h,(x,i+j), n= 2,3,..., 

i, j=l, 2, . . . . 

These relations are rigorous consequences of the hypotheses imposed on h(x, E). 
For by hypothesis and known theory of analytic functions (e.g., see rll], p. 3l,), 
the ,'unctions h(x, E, j) are analytic on G for all j = 1, 2, . . . . Given a 
bounded open set U c EN and given positive integers i and j, there exists 
6 > 0 (which, in general, may depend on U, i, and j) such that the relations 
(4.16) through (4.19) are valid for XEU and [El<& The number 6 may 
tend to 0 as i + O) or j-.- ~0 , but this does not effect the result since 
the relations (4.17) and (4.20) are independent of E . 

Actually, the hypothesis (h(x, E), E) E G for all (x, E) E C is redundant 
so far as (4.20) is concerned. Because h(x, E) is a small perturbation, 
given a bounded open set U and a positive integer i, there exists 6> 0 
such that (h (x, E, j), E) E G for j = 1, . . . . i, x E U, and 1~1 < 6, 

and the above arguments go through. In fact if the h,(x) are arbitrary 

analytic functions on EN into EN, without regard for convergence of (4.5), 

and if the h,(x, j) are defined by (4.17), it seems likely that (4.20) can 

be established by a similar argument with the use of truncations of (4.5). 

It follows from the first two equations of (4.17) that hl(x, j) = j hi(x), 
j = 1, 2, . . . . Thus, defining pl(x, t) to be 

(4.21) pl(x, t) = t hi(x) 

we have hl(x, j) = pl(x, j), j = 1, 2, . . . . It will now be shown by 
induction that for each m = 1, 2, . . . there exists a function p,(x, t) 
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which is a polynomial in t of degree < m whose coefficients are analytic 
functions on EN into 8 .such that 

(4.22) p,(x, j) = h,(x, j), j = 1, 2, l So 

Assume it true for m 5 n - 1 and let 

(4.23) Q&t) = nf f & 1 
N 

x 
(il) ( $1 
Pjl (x,t)‘*‘Pjk (x,t) ’ 

v=l k=l jl +...+j =v k il, . . ..ik=l 

akhn+ (X> 
a, (il) . ..a. ( ik) 

It follows from (4.17) and the induction assumption that ILn(x,j) = %,(x, ,j), 

j = 1, 2, . . . . and hence, by (4.17), 

(4.24) h,(x, j -I- 1) -h,(x, j) = h,(x) + G&(x, j> 

By induction assumption and (4.23), h,(x) + g(x, t) is a polynomial i.n t 01' 
degree <_ n - 1 and therefore the nth difference of the right side of (4.24) 
with respect to j is 0. This implies that the (n + 1)th difference of 

h(x, j) with respect to j is 0, and hence for each fixed x there exists 
a polynomial pn(x, t) in t of degree <_ n which satisfies (4.22). More- 
over, from (4.24), p,(x, j+l)-pn(x, j) = h,(x) + $(x, j), j = 1, 2, . . . arId 
this implies 

(4.25) p,(x, t + 1) - p,(x, t) = hn(x) + Qn(x, t), n = 2, 3, ... 

for all real t. We now show by induction that p,(x, 0) = 0, n = 1, 2, . . . . 
By (4.21) it holds for m=l. If it is true for m<n- 1, then by (4.23), - 
Q.(x,O) = 0, and by (4.25), pn(x, 1) - p,(x, 0) = h,(x). But 

P,(X, 1) = h,(x, 1) = h,(x) and hence p,(x, Oj = 0. 
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The polynomial pn(x, t) is uniquely determined by the n + 1 values 

p,(x, 0) = 0, p,(x, j) = hn(x, j), j = 1, . . . . n, and it is easily seen that 

(4.26) 

where 

(4.27) An = 

n 

P-(x, t) = k 1 hi(t) hn(x, i) 

12 .n 
1 22 . n2 
. . . . . . : * : 
1 2n . nn 

__ 
i=l 

ith Column 
I 
t 

1t . . 

1 . . t2 
. . . . . . . . . . . . . . . 
1 . . tn 

n 
n2 
. . . 
nn 

This shows that the coefficients of p,(x, t) are analytic funct.ions of x 
EN on . The following lemma has now been established. 

Lemma 4.2 Let G be a connected open set in EN+l such that EN x [O] C G. 
Let h(x, E) be an analytic function of (x, E) on G into EN such t1lat 

h(x, 0) = x and (h(x, E), E) E G for all (x, E) E G. Then the iterations 

dx, E, j), j = 1, 2, . . . . defined by (4.15), are analytic on G and have 
local expansions of the form (4.16) where the h,(x, j) are given by (4.11) 
and satisfy (4.20). The function p,(x, t) defined by (4.26) is a polynomial 
in t of degree < n, p,(x, 0) = 0, and pn(x, j) = h,(x, j), j = 1, 2, . . . . - 

Proceeding formally, we now let 
m 

(4.28) .p(x, E, t) = x + c EnPn(x, t) 
n=l 

satisfies Then p(x, E, 0) = x and p(x, E, 1) = h(x, E). Thus p(x, E, t 

(4.8) with T = 1. It will now be shown that (4.28) formally defines a 
dynamical system, i.e., 

(4.29) P(P(X, E, t), E, 7) = p(X, &, t + 7) . 
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From (2.23), 

P(P(% s, t), E, T) = X + 
r 

En CP,(X, t) + P,(X, 41 
n=l 

(4.30) 

+ f E~$$X, t, d 
n=2 

where 
n-l v 

(4.31) Q&t,d = 7 1 $ 1 
v=l k=l j,+...+j =v k il, . . ..i k =l 

ak PnJX' 7) 

&l)...axiik) 

9 

Hence (4.29) is satisfied if and only if 

Pl(X' t> + Pl(% 7) = ‘+(X, t + 7 

(4.32) 
P,(% t> + Pn(X, 7) + $(% t, T) = p,(x, t + 7 9, n = 2, 3, . . . 

It will now be shown , independently of the question of convergence of (4.28) 

and (4.30), that (4.32) is satisfied. 
.:;., ..? 
,. 
._ 

Lemma 4.3 If the hypothesis of lemma 4.2 is fulfilled, then the fun&ions 

p,(x, t) defined by (4.26) satisfy (4.32). 

Proof : By lemma 4.2, p,(x, j) = h,(x, 31, j = 1, 2, . . . . and it follows from 

(4.19) and (4.31) that Qn(x, i, j) = H,(x, i, j), i, j = 1, 2,.... . It then 

follows from (4.20) that (4.32) is satisfied for (T, t) = (i, j), i, . 
j = 1, 2, . . . . Given any positive integer i, if t = i the relations (4.32) 
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become polynomial equations in r which are satisfied for 7 = j, j =l, 2, . . . . 
Therefore they are satisfied for all real T. Thus (4.32) holds for all real 
7 if t is a positive integer. For fixed T, these relations are polynomial 
equations in t which hold for t = i, i = 1, 2, . . . and therefore for all 
real t. 

It now follows that if (4.28) converges to an analytic function and if the 
manipulations which produced (4.30), (4.31) and (4.32) are justifiallle, then 

P(X, EY 0) = X, P(x, E, 1) = h(x, E), and (4.29) is satisfied. (These 
remarks contain tacit assumptions as to the region of convergence and, in 
particular, analyticity of p(X, E, t) in (X, E) at b%,St for 0 5 t 5 1. ) 
Then v(x, E, t) = p(x, E, 3) satisfies (4.7b), (4.8), and has the group 
property (4.29). From this it can be shown (see Section 5) that v(x, E, t) 
satisfies (4.7a) with g(x, E) = v'(x, E, 0). Thus an investigation of the 
convergence of (4.28) affords us an alternate method of dealing with the 
problem formulated at the beginning of this section. This method will be used 
in Section 5 to prove a convergence theorem. 
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5* A CONVERGENCE THEOREM 

Let 

(5-U eni = ~i(t> 
%l ,i=l, . . . . n, n f 1, 2, . . . , 

where pi and % are given by (4.27). It follows from (4.27) that 
e,,(j) = 0, j # i, j = 0, . . . . n, and eni = 1. From this it is easily 
seen that (with an obvious modification of notation for i = n) 

(5.2) eni = (-,)n+t(t-l) - (t;;+N;-t-1) . . . (t-n> , 

i = 1, . . . . n 

n = 1, 2, . . . 

Differentiation yields 

(5.3) elli(t 
j=O A=0 
jfi R#i 

R#j 

We begin by finding upper bounds for Ien, I and 
use will be made of the following lemma. 

leA,(t)l. For th is purpose 

Lemma 5.1 Given a positive integer n and any t E [0, n], let 

joy j,, --.., jn be the integers in [O, n] enumerated in order of their dis- 
tances .from t, i.e., It-jk/ <, It-j,+,/, k = 0, . . . . n-l. Then It-j,/ <_ 1 
and It-j,] <_ k, k = 1, . . . . n. 
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Proof: 'learly 1 +jk+ l 15 1 t-jk 1 + 1 and therefore the result follows by in- 
duction on k once it has been established that It-j,1 <, 1 and It-j,1 <_ 1. 
If t is an integer then j, = t and hence It-j,J = 0, It-j,l = 1. 
Otherwise t is interior to a unit interval with j, and j, as end points. 
Hence It-j,1 < 1 and It-j11 C 1. 

Given a positive integer n, consider the function eni for any 
i = 1, . . . . n. Given t E [O,- n] let j,, j,, . . . . jn be the quantities de- 
fined in lemma 5.1. One of these integers is necessarily i, i.e., there 
exists koe {O, 1, . . . . nj such that j = i. It follows with the use of 
lemma 5.1 that 

kg 

;t It-j1 = 
i =0 

i It-j,/ <_ I? k <_ n! 
k=O k=l 

3#i 

and therefore, by (5.2), 

(5.4) leni 1 5 (:I Y O <_ t 5 n 

From (5.3) 
n 

le;,(t>l 5 & 1 fl It-Al 
j=O A=0 
jfi Aefi 

Afj 

It follows by the same reasoning used above that each of the n. products on 
the right side of this inequality is bounded by n! and hence 

(5.5) le;,(t) 1 5 n(r) , 0 5 t <_ n 
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n 
The inequality (y) < 2n follows from the relation 1 (T, = 2n, and hence 

i=O 
(5.4) and (5.5) yield 

lOni( < 3 

(5.6) Y O<t<n, i=l , - - . . . . n 

le;i(t)j < n 2n 

Given any positive integer m, it is clear that Ienict)l assumes its maximum 

value on the interval -m < t < 0 at t = - m (i=l, ,.., n). Hence for - - 
-m < t < 0, - - 

le.(t)l <_ m~~;~:lj(m+n) = mcrn+mn) (r) < m.2m.22n 1 

A similar bound is obtainable for /en.(t)], and since these bounds exceed the 

ones in (5.6) we have 
1 

(5*7) Y -m < t < n, i = 1, . . . . n - - 

le~i(t)l < m2m n22n 

As in Section 4, we are primarily interested in analytic function's h(x, E) 
on E N+l into EN. However, such functions can be extended analyticaliy to 

an open set in CN+l , and it is necessary to consider h(x, E) on a complex 

domain in order to invoke a theorem on uniformly convergent sequences of 
analytic functions. Therefore the hypotheses on h(x, E) will be stated for 

a complex domain. The space Ek will be regarded as imbedded in Ck ,k=N, 

N + 1, and the norm of a vector x E Cl' will be denoted by 

llxll = ; l,(j) 12 1’2 
( ) j=l 
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The first two hypotheses to be imposed on h(x, E) are the following: 

(j-1 h(x, E) is a single valued analytic function on a connected open Set 

V c CN+l into CN such that EN x lo] c V and h(x, 0) = x for all 

XEC N for which (x, 0) E v. 

(ii) (h(x, s), E) E V n EN+l for all (x, E) E V fl EW+l. 

Let 

(5.8) v. = TX E CNl(x, 0) E v] 

It follows from (i) that given any xOe Vo, there exist p(xo) > 0 and 
6(x0) > 0 such that (4.5) converges uniformly in (x, E) E CN+' on the 
neighborhood 1) x-x0/l < p(xo), 1~) < 6(x0). Moreover, on this neighborhood 
(4.5) can be expanded in a uniformly convergent power series in the N + 1 
complex variables x wxw, 

0 
. , . , x(NLx;N), i=. In particular, the functions 

h,(x) which appear in (4.5) are analytic on Vo. 

It follows from (ii) that the iterates h(x, E, j), defined by (4.11~)~ exist 
for all j = 1, 2, . . . if (x, E) E V n EN+l. A$ (real) analytic functions of 
analytic functions they are analytic on VnE 

N+l (e.g., see D, p. 351. 
Thus, given ,x0 E EN, there exist p(xo, i) > 0, 6(x0, i) > 0 such that the 
series (4.16) converges uniformly in (x, E) E E N+l on the neighborhood 

Ilx-xoll < 0(x0, i>, 1~1 < 6(x0, i>, and the coefficients of the expansion are 
given by (4.17). Also, on this neighborhood (4..16) can be expanded in a uni.- 

formly convergent power series in the N+li real variables x (l)-,(l) 

xwx(N), & 
0 , "'Y 

0 

Without regard for the existence of the 'iterates h(x, E, j) for complex (x, E), 
the functions hn(x, j) are defined by (4.17) as single valued analytic func- 
tions on Vo, where V. is defined by (5.8). The next hypothesis, which is 

very stringent, imposes a condition on the functions h (x, i). It is shown .n 
at the end of this section that the class of functions which satisfy the 
condition is at least large enough to contain the class of linear functions 
properly. 
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(iii) iiven x0 E EN, there exists p(xo) > 0 and M(xo) > 0 such that 
if xeC and IIx-xoll < 0(x0), then x E V. and lj$s,(x, i-)1; < Mu 
for i = 1, . . . . n, n = 1, 2, . . . . where the h,(x, i) are defined on vO 
by (4.17). 

Lemma 5.2 If h(x, E) satisfies hypotheses (i), (ii), and (iii), then given 
a bounded open set A c EN, there exist a bounded open set U c V. (where V. 

is defined by (5.8)) and M> 0 such that i c U and llh,(x, i)ll < Mn, 

i = 1, . . . . n, n = 1, 2, . . . . for all x E U. 

proof: Given x E ii , let s(x) = FyecNj ily-x/I < o(x)] where P(X) is given 

in (iii). Since A is compact, a finite collection of the s(x) cover it: 

AC ;f S(Xj) 
j=l 

Take U = ff s(xj) and M = max 
j=l 

M(xj) - 
j=l ,...,m 

With the use of the definition (5.1), (4.26) can be written 

(5.9) 

n 

Pn(x, t) = 1 Bni(t 8) h,(x, i) . 
i=l 

It will now be shown that the series 

(a> P(XY E, t) =x+ ?Pn(x, t) 

(5.10) 
n=l 

b) P'(XY s, t) = f En&'; b, t> 
n=l 

converge to analytic functions. 



Lemma 5.3 If h(x, E) satisfies hypotheses (i), (ii), (iii) then, given any 
bounded open set G c EN, there exists 6 > 0 such that the series (5.10) 
converge uniformly in (x, E, t), for (x, E) E G X(-6,6) and for t on any 
finite interval, to functions which are continuous in (x, E, t) on 

G X(-6,6) x E1 and, for fixed t, are analytic in (x, E) on C X(-6,6). More- 
over, given x0 E G , there exists o(x,) 7 0 such that the power series 
expansions of p(x, E, t) and p"(x, E, t) in the N + 1 real variables 
xwx(l), . . . , xwx(N), E 

0 
all real t. 

0 converge for IIx-xoll < P(x,), 1~1 < 6, and 

Proof: By lemma 5.2 there exist a bounded open set U c V. and M7 0 such 
that G C U and Ilh,(x, i)ll < Mn, i = 1, . . . . n, n = 1, 2, . . . . for all 
x c u. Choose any 6 in the interval 0 < 6 < l/M. Given any To 7 0, 

choose a positive integer m7T. If t E [-TO, To] and n >_ m, then 

-m < t < n and - - lQni(t)l and Yen,(t)1 are bounded according to (5.7) 

It then follows from (5.9) that 

for all x E U, t E r-To, To], n >_ m. Application of the ratio test shows that 

co 
c 6n m.2m(4M)nn < m 

n=m 

co 

I 
tin m.2m(4M)n n2 < 03 

n=m 

and these series dominate (5.lOa) and (5.1Ob) respectively for n>m if - 
6% 'EY t) E U X o x [-TO, To], where o = {E e ~'1 1~1 < 6 1. This establishes 

the uniform convergence of (5.10) on U x o x [-To, To]. It follows from a 
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theorem of Weierstrass (e.g., see [12], theorem 3-1, p. 38) that p(x, E, t) 
and p'(x, E, t) are analytic in (x, E) on U x o for each t E El. Given 

any x0 E U there exists p(x,) > 0 such that {x E cNI I[x-xo[l < o(x,)j c U 
whence { x E CN I Ilx-xoll < p(xo)'J x o c U x o . Therefore the power series 

expansions of p(x, E, t) 'and p'(x, E, t) in the N + 1 complex variables 
xwx(l), . . . , x(NLx(N), E 

Chap. ?I, theorem 3, p? 33). 
converge for IIx-~oll < P(X,L 14 < 6 (c~q, 
This proves the.assertions of the lemma for 

(x,E) E U X o and hence, since G X(-6,6) c U X o, they hold for 

lx, +GXCT. 

It follows from (4.16)~ (5.2), (5.9), and (5.10) that 

(5.11) 
P(XY E, 0) = X 

p(x, E, k) = h(x, E, k), k = 1, 2, . . . 

for (x, E) E G x(-S, 6). 

Lemma 5.4. Let h(x, E) satisfy hypotheses (i), (ii), and (iii). Ci.ven a 

bounded connected open set U c EN and To 7 0, there exist a bounded con- 

nected open set % c EN and 6 7 0 for which the conclusions of lemma 5.3 
hold and such that p(x, E, t) E G for all (x, E, t) E U x(-6,6) X [-TO, To]. 

Proof: Choose any bounded open set Ul C EN such that .fi c U 1' By lemma 

5.3, there exists 617 0 such that the conclusion of lemma 5.3 holds with 

respect to 61~ Ul. In particular, p(x, s, t) is continuous on the compact 

set V x [ - 6l 61] x [-TO, 
61 61 

F'2 
To] and therefore p(fi, r- 2, ~1, r-To, To]) 

is compact. Choose any bounded connected open set GC8 which contains it 

and again apply lemma 5.3, taking 6 5 6112. 

Given a bounded connected open set U c EN and To 7 0, choose G and 6 in 

accordance with lemma 5.4. Then p(x, E, t) E G for all (X, E, t) 

in U X (-6,6) X [-To, To]. For any T E El, p(x, E, T) is analytic in (x, E) 

on G x (-6,6). Therefore (see [ll], pp. 33 and 35) p(p(x, E, t), E,T) is 
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analytic on U x(-6,6) for all t E [-TO, TO], T E El, and the power series 
expansion of this composite function can be obta.ined by formal substitution. 
This implies the convergence of (4.30). It follows from lemma 4.3 that the 
relations (4.32) are satisfied, and therefore P(x, E, t) satisfies (4.29) for 

all (x, E) E U X (-6,6), t E [-To, To], and T E E?. Differentiation of (4.23) 
with respect to T yields 

P'(P(X, s, t), E, 7) = p’(X, E, t + 7) 

and setting 7 = 0 we obtain 

P'(P(X, E, t>, E, 0) = P'(X, E, t) 

Hence p(x, E, t) is the solution of the initial value problem 

P' = &P, 4 
(5.12) 

P(X, E, 0) = x 

for (x, E) E U X(-6,6) and t E [-TO, To], where 

(5.13) &, E) = P'(X, E, 0) 

According to (5. ll), p(x, s, 1) = h(x, E). So far, To has been taken to be 
any positive number. Now require To > 1. Then p(x, E, t) is a solution 
of (5.13) for 0 5 t 5 1, (x, E) E U x (-6,6), and so p(x, E, t) satisfies 
(4.7) and (4.8) with T = 1 and g = g. However, g(x, E) is defined by 

(5.13) on all of G x (-6,6). It will now be shown that p(x, E, t) satisfies 
(5.12) for all (x, E) E G X (-6,6) if ItI is sufficiently small. That is, 
given any (x0, E) E G x (-6,6), there exists To > 0 such that p(xo, E, t) 
satisfies (5.12) for ItI < TV. 

Given (x,,E) E G X (-6,6), there exists a connected open set Gl such that 
clc G, x0 E Gl, and Gl n U # #. (Since G is connected, x0 can be connec- 
ted to a point in U by a compact polygonal arc A c G. Then Gl can be 

taken to be a p-neighborhood of A for p sufficiently small.) For fixed E, 
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P(X, s, t) is continuous in (x, t) on Cl x El and p(x, E, 0) = x. There- 
fore, given x &cl, there exist TX > 0 and a connected open set II(x) con- 
taining x such that p(H(x), E, t) c G if ItI < T . But 9 is compact 

X 
and so it can be covered by a finite number of these neighborhoods: 

9 c t I$) 
i=l 

Let To = min. (TX , . . . . Tag). Then 7. > 0 and p($, E, t) c G for all 
T E (-T,,T~). Henck, for the given 8, if ItI < 7. then p'(x, E, t) and 

E(P(X, s, t), s) are analytic in x on the connected open set Cl' and they 
are equal on Gl n U. Therefore (rll], pp. 34 and 35) they are equal on all 
of Gl and, in particular, at x . 0 

The function p(x, E, t) is defined by (5.10) for all t. It follows from 
well known extension theorems for ordinary differential equations that p(x, E, t) 
satisfies (5.12) on any open interval a < t < /3 (a < 0 < @) on which it re- 
mains in G. Finally, in view of (5.11), we see that given T > 0, the func- 
tion 

v(x, E, t> = P(X, s, $1 

satisfies (4.7) and (4.8) with 

dx, El = $ P'(X, s, 0) 

for any (x, E) E G x (-6,6) for which v(x, E, t) E G if 0 <_ t <_ T. The 

following theorem has now been established. 

Theorem 5.1 If h(x, E) satisfies hypotheses (i), (ii), and (iii), then 
given a bounded connected open set U c EN, T > 0, and To > T, there exist 
a bounded connected open set G c EN which contains U, a positive number 6, 

and a function g(x, E) on G x (-6,6) into which have the following 

properties. The function g(x, E) is analytic on G x (-6,6), g(x, 0) = 0, 

and given any x0 E G there exists p(x,) > 0 such that the power series 

expansion of g(x, E) in the N + 1 variables x (l)-x(l) 0 , .'.Y x(N)-,(N) 
0 yE 
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converges for IIx-xoll < p(xo), 1~1 < 6 . Given any (x, E) E G x (-a,&), let 
v(x, E, t) be the solution of (4.7). If x E U then v(x, E, t) exists for 

Itl 5 To. Given any (x, E) E C x (-6,6) such that v(x, E, t) exists for 
0 <_ t < T, we have v(x, E, T) = h(x, E). 

We conclude this section with an examination of class of functions h(x, E) 
which satisfy hypotheses (i), (ii), and (iii). First it will be shown that 
if h(x, E) is linear and satisfies (i) and (ii), then it satisfies (iii). 
The linear functions which satisfy (i) and (ii) are of the form 

(5.14) t-6, E) = A(s) x 

where Ah) is an N x N matrix, analytic in E with an expansion of the form 

(5.15) A(E) = 7 '"An 
n=O 

where the %I are real constant matrices and A0 = I. It is assumed that . 
(5.15) has nonzero radius of convergence and so there exists 6 > 0 such 

that (5.15) converges for E E o = {s E $1 1~1 < 63. Then h(x, E) satis- 
fies (i) and (ii) with V = CN x o. For any N X N matrix B let 

llBll = ( ~ lbij I2 j1’2 
i, j=l 

Then IPll 5 II4 IlBll and IIWI 5 lbll llxll for x E CN- 
It follows from (4.14) and (5.14) that 

(5.16) 

From (5.15), 

h(x, s, k) = Am x, k = 1, 2, . . . 

m 
Am = c 

n +...+ 1 
E nkA "1' ' '%k 

nl,...,nk=O 
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and collecting powers of E we obtain 

(5.17) A(E>~ = 1 CL 
m=O 

where 

(5* 18) B*= Anlo *a A'nk 
n +...n 1 k =m 

where the summation c 
r-i +...+n extends over all k-vectors (n,,...,n,) in 

1 k =m 
which the n, 

J 
are nonnegative integers and nl+...+nk=m. It follows that 

(5.19) 

Given real 
the series 

hm(x, k) = Bmk x 

(or complex ) numbers an, a necessary and sufficient condition for 

co 

7 

n 
'nE 

n=O 

to have nonzero radius of convergence is the existence of a constant M> 0 
such that IanI 5 Mn, n = 1, 2, . . . . Applying this condition to each ele- 
ment of the matrices A n and noting that jl~,ll = OS , we see that there 
exists M1 > 0 such that 

llA,ll <_ I$ fly n = 0, 1, . . . 

Therefore, if nl + . . . + nk = m, then I/~~... Ankll 5 " q , and so each 
term in (5.18) is dominated by k/2 . N %F There are (mjk;l) terms in this 
sum and hence 

llB*ll 5 ( rn;F;‘, Nk/2 M!J 
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Let M2 = 5 J N ; then tij2q rM$ k =l, . . . . m. Also, 

( m+k-1 m+k-1 
k-l > <2 < 22m , k = 1, . . . . m . 

IIence 11~~11 < (4~~)~~ k = 1, l l . , my and llhmbyk)ll <, (4M2Jrn 11x11 5 
[4M2(\lxll + l)lm, k = 1, . . . . m. This implies (iii).' 

A nonlinear function h(x, E) which satisfies (i), (ii) and (iii) will now be 
constructed. Let N = 1 and P(x) = x + x3. Then P'(x) = 1 + 3x2 > 0 for 
real x, and it follows that P(x) has a single valued analytic inverse, 
call it Q(y), on some complex neighborhood of the real &is (Q(y) can be 
written explicitly in terms of radicals). Thus 

(5.20) Q(Y) + Q(Y>~ = Y 

and Q(Y) isrealif y is real. Let 

v(x, E, t) = P[Q(x) + s t] 

For real x and E, v(x, E, t) is a dynamical system, and defining 
h(x, E) = v(x, E, 1) it follows that h(x, E) satisfies (ii) and 
h(x, E, k) = v(x, E, k). Expanding the above expression for v(x, E, t) with 
the use of (5.20) we obtain 

v(x, E, t) = x + [1+3Q(x)2]et + 3Q(x)s2t2 + s3t3 

Then 

h(x, E, k) = x + [1+3Q(x)2]sk + 3Q(x)s2k2 + s3k3 

and it follows that h(x, E) can be extended to a complex neighborhood of E2, 
the h,(x, k) can be extended to a complex neighborhood of & and 
h,(x, k) = 0 if n > 3 for all k = 1, 2, . . . . Therefore h(x, s) satisfies 
hypotheses (i) and (iii). More generally, let P(x) be any function which is 
analytic and has an analytic inverse, Q(y), on some complex neighborhood of 
the real axis and which is real for real x. Let h(x, E) = P[Q(x) + s] where- 

by h(x, E, k) = P[Q(x) + E k]. Then 

h,bb k) = $ P b-4 [Q(x) lkn 

49 



There exists a constant Y > 0 such that 

n n 
1 < n. - P , n = 1, 2, . . . 

and therefore h(x, E) satisfies (iii) provided there 

, n = 1, 2, . . . 

exists M2 > 0 such that 

The next, and last, example shows that the class of functions h(x, E) which 
satisfy (i), (ii), (iii) contains functions which grow rapidly with /[x1(. 
Let N = 2, v =(v,, v,>, x = (xl, x2), and let A(x) be any entire function on 

C1 . Consider the autonomous system 

v; = - E acv; + v3v2 

(5.21) 

for (v, E) E c2 x 2. The solutions satisfy 

and so the solution of (5.21) which satisfies 
is easily seen to be 

2 the condition v1 + v: = constant, 
the initial cdndition v(x,~,O) = x 

vl(x, E, t) = x1 cos[A(x~+x~) Et]- x2 sin [,4(x:+x:) Et] 

v2(x, E, t> = x1 sin[R(xf+xg) Et]+ x2 cos [d(xf+xz) et] 

Let h(x, E) = v(x, E, 1). Then h(x, E, k) = v(x, E, k) and it is readily 

seen from the power series expansions of the above functions that f-b, E) 
satisfies (i), (ii), (iii) with V = CN+l. If x and E are real, then 

h(x, E) is bounded for all x. But if E is pure imaginary (and fixed) and x 

is real, then llh<x, &>I1 -t 0~ to the order 

IlxJJe al12) 1 E I 

as llxll -) 03. 
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Are the Perturbation Expansions for the Ground State of Helium the Same for 
Hartree and Hartree-Fock Model Hamiltonians?*t 

R. J. DICKSON AND J. SO~OLOPP 
Lockheed Palo Allo Researck Laboratory, Palo Alto, Calijornia 

(Received 23 August 1965) 

The Weiss-Martin variation-perturbation c;llculation for.thc first-order function in the pcrturbntion 
expansion of the ground-state function of the helium atom, ostensibly using B IIartrcc-Pock model Ilamil- 
toninn, actually uses a Hartrcc model Hamiltonian. We show that the equation obtained for the first-order 
function using a Ilartrcc model Hamiltonian and the corresponding equation obtained using a IIortrcc-Icock 
model Ilamiltoninn have no common solirtion. Thus, no conclusion mny be drawn about the I-Iortrcc-Pock 
approximation on the basis of the Weiss-Marlin paper. 

I. INTRODUCTION 

T NAT the Hartree and Hartrce-Fock equations are 
the same for the ground-state orbital of helium is 

a commonplace among atomic physicists. At the risk of 
being considered pedantic, we contend that the Hartree 
and Hartree-Fock equations for the ground-state orbital 
of helium are rrol the same; they merely have a common 
ground-state solution. The temptation to dispense with 
the exchange operator of the Hartrce-pock Hamiltonian 
and use the far simpler Hartree Hamiltonian in applica- 
tions involving the ground state of helium has proven 
irresistible. 

As we shall see, the form of the Hamiltonian can be 
all-important. In a variation-perturbation calculation 
of the first-order wave function for the ground state of 
helium, Weiss and Martin’ (WM) ostensibly use the 
Hartree-Pock model Hamiltonian. In the actual calcu- 
lation, WIM use the Hartrce rather than the Hartree- 
Pock operator. We shall show that the equation ob- 
tained for the first-order function in the perturbation 
espansion of the ground-state function of helium using a 
Hartree model Hamiltonian and the corresponding 
equation obtained using a Hartree-Pock model Hamil- 
tonian have no common solution. 

II. THE PERTURRATION EXPANSION 
The nonrelativistic Hamiltonian for the helium iso- 

electronic sequence is given by 

z z 1 
J(+ -~v12-~-~v*‘-~+- 0) 

I1 11 rll 
in atomic units. 

We define Coulomb and exchange operators, 
respectively, 

J 

ld2>1’ 
J,(l)e(l>=e(l) dry--, 

112 
(24 

K,(1)8(1)=4(1) [dr9=. (2b) 
J r11 

+SU ported 
throug i 

by the Lockheed Missiles & Space Company 
the Independent Research Program and b the NatIonal 

Acronautiw and Space Administration through -M 
- . 

-fPresented at the Albertn Symposium on Quantum Chemistry, 
University of Alberta, Edmonton, August 1965. 

1 A. W. Wciu and J. B. Martin, Phys. Rev. 132, 2118 (1963). 

The Hartree and I-Iartree-Pock equations for the 
ground-state orbital of helium are, respectively, 

zzy I)$+( 1) = 
[ 

--:v+~+/,(I) $(1)=&l), (34 
71 1 

If “F(l)$fl( 1) 

= 
C 

++-4 +2/,(l)- l<,(l) 9(l) = vbm , (31,) 
fl 1 

where q is the orbital energy. 
We may rewrite the Hamiltonian of the system so as 

to give either a Hartree or IIartrce-Pock model Hamil- 
tonian as follsws: 

~c=11”(1)+11”(2)+V”(1,2), (W 

VH= (l/r&J,(1)-/,(2); Cab) 
or 

3C=II’xP(1)+IF(2)+V”F(1,2), (.w 

V’~F=(l/rr*)-2/*(1)+1\‘~(1)-22J~(2)+li~(2). (5b) 

The ground-state wave function for the helium atom 
is given by the product 

$4,2)=&M2), 
where we have suppressed the antisymmetric spin func- 
tion and +, is a solution of 

C~“w+~Y2)1hI(L2) 
=[~“F(l>+~Z”F(2>]~0(l,2)= 2&41,2). (6) 

We now let 
LI=ZI”(l)+t7”(2), (74 

v= V”, (7b) 
Or 

EI=BHF(l)+ZI”F(2), (84 

V= VHF @b) 

and develop the standard perturbation expansions. 
Let 

Q=$o+bh+h+ - * * , @a> 

E=ro+cl+rr+ca+***, @b) 
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where $“‘s are solutions of the equations 

(II- folbh= c1+0- wo, 

(~f--o~~:=t~o+C1~11V~l, 
: . 

(104 

(10b) 

and the energies are given by 

v=2P, 

a=Uol VMO), 

+901 VIhl, 
: 

(114 

Wb) 

Old 

We have assumed (~o~~,)=O in Eqs. (11). 

III. FIRST-ORDER EQUATIONS 

Let US assume the solutions to Eq. (lOa) are the same 
for the two model Hamiltonians. We can then write the 
two equations in the form 

[zz’r(l)+zz”(2)- t&= tr”$o- V”$O) (124 

[ZZHP(I)+ZZ’tP(2)- co-J&= QF$,,- VHr#o. (12b) 

The right-hand sides are identical, since 

vn+,= Virgo (13) 
and 

a=($ol wo>. 

Taking the difference of Eqs. (12), we have 

We wish to show that any continuous, symmetric, 
square-integrable solution of this equation is of the form 

lh(1,2)=wwm, W 

where a is a constant. The argument is then completed 
by showing that a solution of this form is not an 
acceptable solution to one of Eqs. (12). 

Equation (14) may be written in operator form as 

cbh(1,2)=0, (14) 

where A? is defined by 

~~1(1,2)= 91(3~C~(3)~l(1,2)-9(l)~~(3,2)l~~~ 
J rn 

+ ~1(3~C~(3)~1(1,2)-~(2)~,(l,3)1 
J 

dn. (17) 
na 

Now the inner product 

+ J/J ld3)121~d1,2) I Z-~*(3)~,*(l,2k(2)~~(l,3)dr1351rls, (18) 

r23 

1 1~(3)~,(1,2)-~(1)~,(3,2) I z 1 
=- drldrzdzc+- 

2 JJJ 03 2 J/J 1~(3)~1(1,2)-~(2)C1(1,3) I * 
dlldrzdr3, (19) 

*:3 

as may be verified by expanding the right-hand side From the second we have 
and using symmetry. 

Hence $df9,2) = D1&3>/&3>1&9, (22b) 

($dW&O 
and combining 

=0 if, and only if, both expressions in abso- khw = r~1@B)/~‘@)k(lko 
lute signs, vanish almost everywhere. (20) =Qdo#J(2) * (23) 

Hence, the first part of the argument is completed: a 
C&=0=, (~*l~~L1)=0=)~1(1,2)=cl~(l)~(2). 

Since we assume 4 and +I are continuous functions, the 
expressions in absolute signs will vanish almost every- 
where only if they vanish identically, i.e., only if 

Substituting this solution of Eq. (14) into Eq. (12a), 
we find 

(P-f&o=0 (24) 

and, since $ofO, this implies 

‘, l~(3)l’ 

fll J -dr,- 
ha J ld3)l’ 

-dra= cl, (25) 
f0 

and 
~(3)~~(1,2)=~(l)el(3,2), W) 
~(3)~~(1,2)3~(2)~,(1,3). @lb) 

Let B denote a point such that &3)#0. Then from 
the first of these two identities we have 

AW = C$r63,2)/4@)k(l) - (224 
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an obvious absurdity. Thus, the argument is com- 
pleted. The only solution of Eq. (14) is not a solution of 
Eq. (12a) and thus Eqs. (12a) and (12b) have no 
common solution. 

IV. DISCUSSION 

WJI characterize their results for the energy of helium 
through third order as “somewhat discouraging” and 
a number of physicists have taken the WM calculation 
to indicate that the Hartrcc-Pock approximation is a 
poor xeroth-order approximation for perturbation 
theory. We have shown, on the contrary, that 910 con- 
clusion may be drawn about the Hartree-Fock approxi- 

NASA-Langley, 1966 CR-583 55 

mation on the basis of the WM paper. \\‘.\I used the 
Hartrce, rather than the IIartrcc-Irock, approsimation 
and our proof in See. III indicates that the first-order 
functions for the two models arc dificrcnt. 
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