21 research outputs found

    Key polynomials for simple extensions of valued fields

    Full text link
    Let ι:KLK(x)\iota:K\hookrightarrow L\cong K(x) be a simple transcendental extension of valued fields, where KK is equipped with a valuation ν\nu of rank 1. That is, we assume given a rank 1 valuation ν\nu of KK and its extension ν\nu' to LL. Let (Rν,Mν,kν)(R_\nu,M_\nu,k_\nu) denote the valuation ring of ν\nu. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to ι\iota a countable well ordered set Q={Qi}iΛK[x]; \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; the QiQ_i are called {\bf key polynomials}. Key polynomials QiQ_i which have no immediate predecessor are called {\bf limit key polynomials}. Let βi=ν(Qi)\beta_i=\nu'(Q_i). We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if char kν=0\operatorname{char}\ k_\nu=0 then the set of key polynomials has order type at most ω\omega, while in the case char kν=p>0\operatorname{char}\ k_\nu=p>0 this order type is bounded above by ω×ω\omega\times\omega, where ω\omega stands for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519

    Rank one discrete valuations of power series fields

    Get PDF
    In this paper we study the rank one discrete valuations of the field k((X1,...,Xn))k((X_1,..., X_n)) whose center in k\lcor\X\rcor is the maximal ideal. In sections 2 to 6 we give a construction of a system of parametric equations describing such valuations. This amounts to finding a parameter and a field of coefficients. We devote section 2 to finding an element of value 1, that is, a parameter. The field of coefficients is the residue field of the valuation, and it is given in section 5. The constructions given in these sections are not effective in the general case, because we need either to use the Zorn's lemma or to know explicitly a section σ\sigma of the natural homomorphism R_v\to\d between the ring and the residue field of the valuation vv. However, as a consequence of this construction, in section 7, we prove that k((\X)) can be embedded into a field L((\Y)), where LL is an algebraic extension of kk and the {\em ``extended valuation'' is as close as possible to the usual order function}

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care
    corecore