31,507 research outputs found

    Particle deposition onto a flat plate with various slopes

    Get PDF
    In this work, a numerical simulation of the deposition of small suspended particles onto a flat plate with various degrees of inclination is performed. The particle deposition rates are obtained for various Reynolds and Rayleigh number groups

    Optimal spectral bandwidth for long memory

    Get PDF
    For long range dependent time series with a spectral singularity at frequency zero, a theory for optimal bandwidth choice in non-parametric analysis ofthe singularity was developed by Robinson (1991b). The optimal bandwidths are described and compared with those in case of analysis of a smooth spectrum. They are also analysed in case of fractional ARIMA models and calculated as a function of the self similarity parameter in some special cases. Feasible data dependent approximations to the optimal bandwidth are discussed

    New methods for the analysis of long memory time series: application to Spanish inflation

    Get PDF
    Models for long-memory time series are considered, in which the autocovariance sequence is only parameterized at very long lags, or the spectral density is only parametized at very low frequencies. Various recently proposed methods for estimating the differencing parameters are reviewed, and applied to an economic time series of prices in Spain

    Averaged Singular Integral Estimation as a Bias Reduction Technique

    Get PDF
    This paper proposes an averaged version of singular integral estimators, whose bias achieves higher rates of convergence under smoothing assumptions. We derive exact bias bounds, without imposing smoothing assumptions, which are a basis for deriving the rates of convergence under differentiability assumptions.Publicad

    Nondiffracting Accelerating Waves: Weber waves and parabolic momentum

    Full text link
    Diffraction is one of the universal phenomena of physics, and a way to overcome it has always represented a challenge for physicists. In order to control diffraction, the study of structured waves has become decisive. Here, we present a specific class of nondiffracting spatially accelerating solutions of the Maxwell equations: the Weber waves. These nonparaxial waves propagate along parabolic trajectories while approximately preserving their shape. They are expressed in an analytic closed form and naturally separate in forward and backward propagation. We show that the Weber waves are self-healing, can form periodic breather waves and have a well-defined conserved quantity: the parabolic momentum. We find that our Weber waves for moderate to large values of the parabolic momenta can be described by a modulated Airy function. Because the Weber waves are exact time-harmonic solutions of the wave equation, they have implications for many linear wave systems in nature, ranging from acoustic, electromagnetic and elastic waves to surface waves in fluids and membranes.Comment: 10 pages, 4 figures, v2: minor typos correcte
    • …
    corecore