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1. I NTRODUCTI ON 

A theory of optimal bandwidth choice in nonparametric spectral estimation 

was developed many years ago (see ego Parzen 1957). This theory in large part 

precedes the corresponding optimal bandwidth literature for nonparametric 

probability density and regression estimation, though it has not been 

developed to the same extent. There are considerable similarities between the 

two types of theory. In both cases, a nonparametric estimate of an unknown 

function at a given point of the domain borrows information from neighbouring 

points. The extent of such information is largely determined by a "bandwidth" 

number, and the choice of this considerably affects the estimate. Too large a 

bandwidth tends to be associated with a large bias, too small a bandwidth with 

a large variance. One usually seeks a bandwidth which balances bias and 

imprecision. A mathematically simple way of doing this consists of minimizing 

a form of mean squared error of the nonparametric estimate, either at a 

particular point of interest, or else averaged across an interval or possibly 

the whole domain. Typically, a closed form formula for an 'optimal' bandwidth 

results, depending on the precise way the nonparametric estimate has been 

implemented and on features of the nonparametric function, in particular, 

smoothness properties. 

In the spectral estimation situation, and the probability density and 

regression situations, it is typically assumed that the unknown function is at 

least finite at all points at which it is estimated. This assumption may be 

controversial in case of spectral estimation. Some plots of spectral estimates 

exhibit sharp peaks (so that it has long been common practice to use a 

logarithmic scale), and this could be consistent with a singularity in the 

spectral density. Likewise, plots of sample autocorrelations are 

sometimes indicative of a slow rate of decay. Consequently, there has been 

considerable study of 'long range dependent' parametric and nonparametric 

models which imply a singularity in the spectral density, typically at zero 

frequency. 

Recently, Robinson (1991 b) has developed some optimality theory for 

nonparametric frequency domain estimation in case of long range dependence. 
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The present paper elaborates on and extends his work. The following section 

briefly reviews related results for "short memory" time series. by which we 

mean here ones with finite spectral density. Section 3 discusses Robinson's 

(1991a) optimal bandwidth results for long range dependence. In Section 4 

these formulae are further analyzed and numerically illustrated in case of 

fractional ARIMA (ARFIMA) models. Feasible approximations of the optimal 

bandwidth are derived in Section 5. 

2. OPTIMAL BANDWIDTH FOR THE SMOOTH SPECTRUM ESTIMATE 

First we introduce some notation. Denote by X • t= O. ± 1. ±2•... at 
discrete parameter covariance stationary time series; for the sake of 

simplicity we suppose X is also Gaussian. though our conclusions have moret 
general relevance. Denote the lag-j autocovariance of X byt 

'(.= E(Xj - E(X »)(X - E(X »). j= o. ± 1. ±2•...•J 000 

and the spectral density of X byt 

f(A) '(. cos jA. -n ~ A ~ n. 
J 

For a realization of size n, introduce the periodogram 

itA l2](A) = (2nn)-1 I rX e • (2. 1 ) 
tt=l 

All estimates in the paper will depend on !(A) computed at frequencies 

A = 2nj/n for integer j. Notice that. E(X ) is not assUmed to be zero (or
j o

known) and for j~ O(mod(n». !(Aj ) is invariant to any location change in the 

Xt · 

Because we focus on estimation around zero frequency when we deal with long 

range dependence. we shall consequently give formulae for estimates of a 

smooth spectral density only at zero frequency; in the long range dependent 

case, our results go through in case of estimation around another non-zero 

frequency at which there is known to be a spectral singularity. and of 
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course there is no loss of generality in looking at A= 0 in the smooth case. 

We suppose now that 0< [(0) < m and 

(2.2) 

for some « E (0, 2), where 0 < 1£«1 < m. This condition essentially says that, 

in a neighbourhodd of A= 0, [(A) satisfies a Lipschitz condition of degree « 

for 0< «~ 1, or [(A) is differentiable and its derivative satisfy a Lipschitz 

condition of degree «- 1, and is zero at A= 0, for 1< «$ 2. In case « = 1 we 

have £ = B log [(O)/BA and in case « = 2 we have £ = (82 [(0)/BA2 )/(2 [(0».
1 2 

The averaged periodogram form of estimate of [(0) which we consider (see 

e.g. Bri11inger 1975, Robinson 1983) is 

n 
f(O) = 2n n-1 L Kn(A

j
) I(A

j 
), (2.3) 

j=l 

where 

(2.4) 

Here m is an integer between 1 and n, depending on n in asymptotic theory, 

while K(A) is a real, even function satisfying 

m 

J K(A) d A = 1. (2.5) 
-m 

m is the bandwidth number, which is regarded as tending to infinity as n does 

but more slowly, K(A) is the spectral window, a simple leading case of which 

is 

(2n) -1 , 
K(A) = (2.6)

{ o , 

For future use, introduce also 
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CIl a 
Ce:J 1i\1 K(i\) d i\, (2.7) 

-CIl 

(2.8) 

where it will be taken for granted that the integrals exist for the a and ~ 

values used. 

Under the above conditions and additional regularity conditions one has for 

the scaled mean squared error of [(0), 

(2.9) 

when 

C2.10) 

This is minimized with respect to m by� 

2CU (20:+ 1)�m n C2. 11)opt 

In case K is given by C2.6), we have 

C2. 12) 

and thus, 

C2.13) 

and the optimal m is 

1 
20: 

= [_c_o:+1_)2_] 20: + 1 20:+ 2 m n (2.14)
opt 20: (2rr)20: £2 

0: 
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3. OPTIMAL BANDWIDTH UNDER LONG RANGE DEPENDENCE 

We now consider processes with spectrum satisfying 

where L(A) is slowly varying at infinity; that is, 

L(tA) 
~ 1 as A ~~, for all t> 0, (3.1) 

L(A) 

and 1/2 < H < 1. Clearly f(O) is now infinite and it is no longer meaningful 

to estimate it. However, it is of some interest to investigate the impact on 

optimal bandwidth in case one attempts to estimate f(O) in the incorrect 

belief that it is finite. In addition Robinson (1991 b) has shown that an 

optimal type of spectral bandwidth is relevant to the choice of bandwidth in 

the semiparametric estimate of H proposed by Robinson (1991 a). 

The criterion (2.9) is no longer relevant. However, Robinson (1991 b) 

suggested the extended criterion 

E{(F(A ) - G (A »/G (A )}2, (3.2)
m H m H m 

where 

m 
hA )= ~ ~ HA.) (3.3)m n L. J' 

j=l 

and 

G (A)= L(A-1 ) A2Cl-Hl 1(2(l-H» - fA gH(A) d A - fA f(A) d A, as A~ 0+. (3.4) 
H 0 0 

Notice that in case K is given by (2.6), [(0) = t(A )IA reduces to the left m m 
hand side of (2.9). To extend condition (2.2) it is assumed for aE (0, 2], 

(3.5) 
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where 0< lE (H)\ < m, 1/2< H< 1. Notice that E (H) in general depends on H as a a 
well as a, as will be illustrated subsequently. 

Consider the case 1/2 < H < 3/4. Introduce also the regularity condition 

I[(A) - [(A-JL) I 
= O(A

-1 
), as A ---+ m, (3.6) 

IJLI ~ (IJLIJ 

for any 6 E (0, 1) and ~ E (1, m); the condition is discussed by Robinson 

(1991 b). Under these conditions and (2.10), Robinson (1991 b) established 

that 

a(3.2)� _ 4(l-H)2 [ 1 + { __E__(_H_)_}2 A~a], as n ---+ m, (3.7) 
(3- 4H) m 2- 2H + a 

and an optimal m is 

= {_(_2_-_2_H_+_a_)_2 }1/(2a+ 1) 2a/(2a+1)m (H) n (3.8)
opt 2a (2n)2a E2 (H)(3- 4H) 

a 

Notice that both formulae are independent of the slowing varying function L, 

so that the results have the advantage of being valid when the functional 

form of L is unknown. Note also that the rate of convergence in (3.8) is 

identical to that in (2.11), so that long range dependence, in the case 

1/2 < H < 3/4, affects only the multiplying factor in the optimal m. Notice 

finally that the formulae (3.7) and (3.8) reduce to (2.9) and (2.11) on taking 

H=1/2 and g (0)= [(0).
112 

When 3/4 < H< 1, [(A) is no longer square-integrable on a neighbourhood of 

the origin. In this case, instead of (3.6), it is assumed that 

(3.9) 

where D = 2 r(2(1-H» cos((l-H)n). Robinson (1991b) showed that (3.1) and 
H 

(3.9) implies that 
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(3.10)� 

uniformly in A E(O, n). Assumption (3.9) is stronger than (3.6). 

Furthermore, (3.10) implies that [(A) satisfies an approximate Lip(2-2H) 

condition outside a neighbourhood of the origin, thereby ruling out 

long-memory behaviour at nonzero frequencies. Under these assumptions, when 

3/4< H< 1, Robinson (1991a) established that 

(3. 11) 

where 

4r(2H- 1 )2 },A = 2D2 (1- H)2 {1 + 1 + 1__ +� 
1 H (4H- 3) (2H- 1) 2H2(4H- 1) H2(4H- 1) r(4H)� 

4D E (H) (1- H)2
H a

A =  A = 
2 3 2H(2H- 1)(2- 2H+ a) (2- 2H+ a) 

which is minimized with respect to m by 

a {H( 2H-2+ClI 
n 2-2H+a _ 2- 2H+ Cl 

m (H) - A(m (H)) 
opt opt 

2n IEa(H)1 [ 4a(2H- 1) 

1 
2-2H+a

1 
+ 16a (1- H){ 1 _ , (3. 12) 

(4H- 3)(2H- 1) 

where A(m)= L(n)/L(A-1). In general there is no closed form expression for 
m 

m (H) in this case. However, in ARFIMA models discussed in the next section, 
opt 

A(m)= 1 all m, and m (H) is a function of Hand n. When A(m) ~ 1 as n ~ 
opt 
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~, e.g. L(A)= Ilog AI and m - ~ n, 0< ~< 1, (3.12) also simplifies. Unlike in 

(3.8), the power of n in (3.12) is a function of H. 

4. FRACTIONAL ARIMAS. 

In a fractional differenced model we have 

(4.1) 

where 0< h(O) < ~. In particular, this class of models includes the 

ARFIMA(p, H- 1/2, q) model in which 

2 
(1' b(e iA )1 2 

h(A) = (4.2)
22n a(e iA ) 1 ' 

where 

p q 
a(z) = 1- [a. zJ, b(z) = 1- [b zj, (4.3) 

j= 1 J j= 1 j 

all zeros of a and b are outside the unit circle in the complex plane, and 
(1'2) O. 

In general, and as is the case in the ARIMA model, assume that heAl has 

first derivative h' (0)= 0, and second derivative h" (0). Then, g (A) = C A1
-

2H
, 

H 
where 0< C < 00, and 

iA 1-2Hf (A) heAl 1 - e 
= 

g (A) C A 
H 

h(A) sin(A/2) ] 1-2E 

= 
C [ i\l2 
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-1 " 2- C { h(o) + h (0) A /2 } {I - (A/2)2/6 r-2H 

-1 " 2 2- C { h(O) + h (0) A /2 } { 1 - (1- 2H) A /24 } 

- 1 + { h"(O)1 2h(0) + (2H- 1)/24 } A2,� (4.4) 

on taking C = h(O). Thus 

E (H) = h" (0)1 2h(0) + (2H- 1)/24.� (4.5)2 

The second component of E� (H) is positive and takes values zero (when H = 
2 

1/2),1/48 (when H= 3/4), and 1/24 (when H= 1). Notice that E (H)= (2H- 1)/24
2 

in the ARIMA(O, H- 1/2, 0)� case. The first component of (4.5) can be positive 

or negative and it can be� large or small. 

We can get a more useful picture of the variability in E (H) by studying the 
a. 

ARFIMA case. Put 

p 
a = a (1) = 1- L (4.6)a j'

j=1 

q 
b = b(l) = 1- L b., (4.7)

Jj=1 

P 
a' = d aCe

D. 
)/d AIA=o = - i L j a j' (4.8) 

j=1 

• A� q 
b'� = d b(el )/d AIA=o = - i L j b

j
, (4.9) 

j=1 

P 2 
L j a j' (4.10) 

j=1 

(4.11) 

It may be shown that 
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b Ol 

+ 2 
b 

r 
q 

j=l 
/ b j r~=l j b j 

= 2 { + [ 
1- ~=1 / b j 1- ~=1 j b j r 

qr 2
j=l j a j [ r~=l j a j r}. (4. 12)-

1- ~ l a 1- ~=1 j a jj=l j 

In the AR(l) case we have 

OI 

_h__(_0_) = _ { 
a

1 
a 

1 
-- + (4.13) 

2 h(O) 1-a (l-a )2 

1 1 

and in the AR(2) case 

h" (0) a + 4 a a-aa +4a 
1 2 1 1 2 2 (4.14)= - { =r}

2 h(O) 1- a - a (1 - a - a )2
1 2 1 2 

Corresponding MA formulae are obtained by replacing a's by b's and changing 

sign. For the ARMA(l, 1) case 

hOl(O) b a 
---= 1 (4. lS) 
2 h(O) (l-a )

2 

1 

In the AR(l) case h Ol (0)/2h(0) approaches minus infinity when a 
1 

approaches 1, 

for example, it is -90 when a = 0.9 and -990 when a = 0.99. For large or 
1 1 

E will be dominated by the hOl(Q)1 2h(0) component.modera te a 1 ' 
2H 
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In Figure 1, we plot m t(H)n-2Cl:/120:+11, 0:= 2, versus H, for 1/2 < H< 3/4,op 
I.e. m (H) in (3.8). When a= 0, E (H) is very small and then m (H)n-4/5 

opt 0: opt 
takes very large values; and E (H) ---+ 0 as H---+ 112 (1. e. m (H) ---+ ID as

0: opt 
H---+ 112). For other values of a different from zero, m (H)n-4/5 suffersopt 
little variation with respect to H. As (3.8) indicates, for any a, m (H)

opt
increases quickly when H is closed to 3/4. 

FIGURE 1 ABOUT HERE 

Figure 2 plots m (H) against H for two different sample sizes when 3/4< H<opt 
1, 1. e. m (H) in (3.12).opt 

FIGURE 2 ABOUT HERE 

In the AR(2) case. for a2 
+ 4 a < 0 the roots of the characteristic 

1 2 

polynomial are complex conjugate. and this may correspond to a finite peak 

in h(A) at a nonzero frequency, and hence in [(A) at a nonzero frequency. 

Figure 3 plots the spectral density for different H values for the 

ARFIMA(2, H-1/2, 0) model. We present two examples where a peak at A-O is 

present. The peaks are not located at the same A value for different H values. 

In the short memory case (H= 1/2), the peak is located at A= n/4 if 

a (a -1)/4a = 1/v2 , which can happen if a = 1.172 and a = -0.707; and the 
1 2 2 1 2 

peak is located at n/6 if a (a -1)/4a = V3/2, which can happen if a = 1.268 
1 2 2 1 

and a = -0.577. 
2 

FI GURE 3 ABOUT HERE 

If m is chosen large enough that the peak fals to the left of A then an m 
estimate of H based on the I(A ) for j s m might have a serious negative bias.

j 
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5. FEASIBLE APPROXIMATIONS TO THE OPTIMAL BANDWIDTH. 

In order to approximate the optimal bandwidth, we need an estimate of H. 

Robinson(1991 a) has suggested an estimate based on the averaged periodogram, 

which is consistent even when L(.) is of unknown functional form. He noted 

that (3.1) implies, for any q> 0, 

F(qA) 2(l-Hl L(1lqA) 
2(1-Hl 0+,q - q as A --+ (5. 1 ) 

F(A) L(l/A) 

suggesting the H estimate 

Amq = 1 (5.2) 
2 log q 

where qe (0,1) because A = A . 
mq m,1Iq 

In order to illustrate the behaviour of Amq evaluated at the optimal 

bandwidth values derived, we have performed a small Monte Carlo experiment. We 

have generated data according to an ARFIMA(l, H-1/2, 0) model, i.e. 

(1- L)H-1/2 (1- La )X = (5.3)1 t C t , 

where LX = X _ and c - iid N(O,l). Figure 4 and 5, presents plots of samplet t 1 t 
root mean squared errors (RMSE) and biases of A 

mq 
(q= 1/2), in 5000 

replications of model (5.3), with a = 0.5, versus m, for various values of H. 
1 

Figure 4, presents results with n= 400, and Figure 6 with n= 800. 

FIGURES 4 AND 5 ABOUT HERE 

The m values which minimize the Monte Carlo MSE differ from m (H). Even 
opt 

the theoretical MSE of Amq will differ from m (H), depending, among other 
~t 

things, on q. Table 1 below compares m values minimizing Monte Carlo RMSE of 

A ,m say, and corresponding m (H), for different values of H. 
mq opt 
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m values minimizing the RMSE of H in the Monte Carlo, rn,
mq 

versus m (H) in model (5.11), Monte Carlo RMSE in parenthesis.
opt 

n = 400 n = 800 

m - m t,(H) m t,(H)
op op

H 

o.6 37 26 65 46� 
(0.1044) (0.1218) (0.0830) (0.0920)� 

o.7 41 32 67 56� 
(0.0809) (0.0885) (0.0650) (0.0692)� 

o.8 51 33 85 60� 
(0.0552) (0.0800) (0.0453) (0.0544)� 

o.9 75 45 127 84� 
(0.0285) (0.0593) (0.0237) (0.0405)� 

So, the rn's minimizing the RMSE of A are greater than m (H). However, 
mq opt 

the RMSE of A are fairly close to the minimum achievable RMSE. 
m IHlq

opt 

Once H has been estimated we need to approximate E (H), which depends on H 
ex 

and, possibly, the parameters explaining the short memory part of the model. 

For instance, in ARFIMA models, the formula for E (H) is given in (4.5). Given 
11 2 

a preliminary value of h (0)/2h(0), E (H) can be estimated according to 
2 

11 

E (A )= h (0)/2h(0) + (2A - 1)124. (5.4)
2 mq mq 

~ 101
Given a pilot value of m, m say, m (H) and H can be estimated by the 

opt 

following iterative procedure, 

1k 11 1k 11 = 1k 11
A + = A~lkl • where m + m (A + ), k= O. 1, 2, ...• (5.5)

q m q opt q 

where (5.4) in the computation of m (H).
opt 

Table 2 and 3 below summarize Monte Carlo results for the iterative 
11 

procedure (5.5). taking h (0)/2h(0)= - a l(l-a )2 as known. 
1 1 
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I TABLE 2 I� 

~(k)

Monte Carlo mean values of m in procedure (5.5) based on 5000 replications 
11� ~(O) 4/5

of model (5.3), with h (0)/2h(0) known. Starting value m = n . 

n = 400 n .. 800 

H 0.6 0.1 0.8 0.9 0.6 0.1 0.8 0.9 

~ (0) 
m 36 41 48 54 63 14 88 105 
~ (1) 
m 31 35 38 43 53 63 61 82 
~ (2 ) 
m 31 35 31 41 52 63 66 11 
~ (00) 
m 30 33 36 40 51 60 64 16 

m (H) 26 32 33 45 46 56 60 84opt 

I TABLE 3 I 

~ (k )
Monte Carlo RMSE and BIAS of H in (5.5) based on 5000 replications 

q� ~(O) 4/5
of� model (5.3). Starting value m = n 

n = 400 n = 800 

H 0.6 0.1 0.8 0.9 0.6 0.1 0.8 0.9 

RMSE 0.2341 0.1198 0.1115 0.0411 0.2201 0.1102 0.1121 0.0456 
A ( 1 ) 
H 

q� BIAS -0.232 -0.118 -0.116 -0.045 -0.219 -0.169 -0.111 -0.043 

RMSE 0.1092 0.0869 0.0614 0.0451 0.0856 0.0100 0.0502 0.0328 
~ (2)
H 

q� BIAS -0.049 -0.038 -0.018 0.0115 -0.044 -0.038 -0.024 -0.008 

RMSE 0.1213 0.0910 0.0134 0.0123 0.0915 0.0145 0.0559 0.0523 
~ (3)
H 

q BIAS -0.034 -0.020 -0.008 0.0406 -0.031 -0.024 -4-1x10 -0.021 

RMSE 0.1281 O. 1014 0.0842 0.0809 0.0961 0.0810 0.0595 0.0600 

BIAS -0.018 -0.009 -0.013 0.0418 -0.019 -0.016 -0.004 -0.035 
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Convergence is typically achieved after two iterations. The 

estimate of m (H) values are fairly close to the true ones, and the 
opt 

RMSE are also close to the minimum achievable ones. However, it is not 

automatic since the true value h"(O)/2h(O) is unknown. 

It is possible to obtain a more "automatic" m by using an expansion of the 

semiparametric spectral density 

A(0) A A
Given a pilot m value m ,estimate H by H= HAeo) . Then perform the least m q 
squares regression 

(5.6) 

where Z'k(H)= 11 - eiAJI1-2H Ak/k!. 8 and i are estimates of h(O) and h"(O)
J J 0 2 

respectively. Hence, h"(O)/2h(O) is estimated by 8 128 . This estimate is 
2 0 

plugged in (5.4) in order to implement the iterative procedure (5.5). 

Tables 4 and 5 summarize Monte Carlo results for the feasible estimates of 

m (H) and corresponding H estimates based on the algorithm (5.5). The 
opt 

h"(O)/2h(O) estimate is not updated at each iteration. The m (H) estimates 
opt 

in Table 4 are more biased than those using the infeasible procedure (Table 

2), and the H estimates are more inefficient (compare Tables 5 and 3). 

However, Monte Carlo results seem sensible enough to us to recomend 

consideration of the automatic iterative procedure in practice, or at least to 

warrant further study directed at theoretically justifying and refuting it. 
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I TABLE 4 I� 

... Ck ) 
Monte Carlo inean values of m in procedure (5.5) based on 5000 replications 

of� model (5.3). with h" (0)/2hrOl estimated by ~ 12~ . 
"'(01 4/5 2 0Starting value m = n . 

n =400 n =800 

H 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 

... COl 
m 36 41 48 54 63 74 88 105 
... COl 
m 35 49 66 85 47 65 105 136 
... C1) 
m 31 41 56 71 39 56 84 121 
... CD:l I 
m 29 43 55 70 39 54 82 110 

m (H)
opt 

26 32 33 45 46 56 60 84 

I TABLE 5 I 

CklMonte Carlo RMSE and BIAS of A in (5.5) based on 5000 replications 
of model (5.3), with h" (0)/2hrOl estimated by ~ 12~ .

"'(01 4/5 2 0Starting value m = n . 

n = 400� n = 800 

H 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 

RMSE 0.2347 0.1798 0.1175 0.0477 0.2207 0.1702 0.1121 0.0456 
~ ( 1 )� 
H

q BIAS -0.232 -0.178 -0.116 -0.045 -0.219 -0. 169 -0.111 -0.043� 

RMSE 0.1520 O. 1369 0.1201 0.1185 0.1123 0 .. 1028 0.0946 0.0895 
... (2 I
H 

q� BIAS -0.014 -0.013 -0.006 0.0246 -0.005 -0.005 -0.002 0.019 

RMSE 0.1881 0.1673 0.1444 0.1214 0.1332 0.1180 0.1033 0.0914 
... C3 I 
H

q BIAS -0.019 -0.004 -0.013 0.0356 0.019 0.006 0.012 0.032 

RMSE 0.1957 0.1844 0.1657 0.1560 0.1365 0.1290 0.1136 0.1141 
... CD:l I
H 

q� BIAS -0.019 -0.021 -0.027 0.0517 0.020 0.019 0.117 0.042 
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