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1. INTRODUCTlON 

Let P be a probability function in (lR d
, IR d

) absolutely continuous with 
respect to the Lebesgue measure 1" with corresponding probability density 
function (pdf) f = dP/dA, which is assumed to be long to the space 
Lp(lRd

, IR d
, A), with 1 ~p < oo. 

Given a random sample {Xi' 1 = 1, ... , n} from P, a singular integral (SI) 
estimator off has the form 
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Enseñanza Superior" (DGES), reference number PB98-0025. 
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where mn = m( n) is known as the smoothing parameter sequence, and 
{Km} n E N as the singular integral window or kernel sequence. 

The sequence {mn} nE N is not necessarily a sequence of numbers; it may 
be a sequence of positive definite matrices ordered by decreasing norm, in 
the usual kernel estimator of a multivariate density, or the order of a poly­
nomial, in the Fourier series estimator. The smoothing sequence belongs to 
some directed set ~, which is a non empty set endowed with a partial 
preorder ~, such that if mI' m2 E~, then 3m3 E ~ such that mI ~ m3 and 
m2~m3' It is assumed that {mn}nEN diverges in ~ as n-+ 00, i.e., VME~, 
3nM E N such that mn ~ M Vn ~ nM . 

Some related estimators have been studied by Walter and Blum (1979), 
Prakasa Rao (1983, pp. 137-141) and Devroye and Gyorfi (1985, Chapo 12, 
Sect. 8), among others. The SI class encompasses a large number of non­
parametric estimators as kernel s, Fourier series estimators, Fejér sums 
estimators, etc. See, e.g., Butzer and Nessel (1971) and Devroye and Gyorfi 
(1985, Chapo 12, Sect. 8) for a review. 

We propose the averaged singular integral (ASI) estimator of order r E N, 
defined as, 

A 1 n l r rjJr (X. - X)J r II n 1 (X. - X)J f~(x)=~I I k~·Kmn -'-k - = I rjJ~ ~I kd·Kmn T ' 
1=1 k=1 k=1 1=1 

where rjJ~=(_l)(k-I)(~), k=l, ... ,r, and {Km} is a singular integral 
window sequence. The SI estimator with window sequence {Km} is the ASI 
of order 1. Notice that L~=o rjJ~ = O and, therefore, ASI estimators integrate 
to one, though they can take negative values. The ASI estimator can 
be interpreted as an SI estimator with window L~=I rjJ~k-dKm(k-Iu) or 
as a weighted average of r SI estimators with weights rjJ~ and window 
k-dKm(k-Iu). 

In this paper we obtain bounds for the global bias of ASI estimators 
without smoothness assumptions on f These bounds are useful for estab­
lishing finite sample properties, for obtaining global rates of convergence 
under smoothness assumptions, and for showing that, under certain 
conditions, the rate of convergen ce increases with r. 

Density estimators with higher rate of convergence for the bias allow 
widening of the spectrum of the admissible degree of smoothing. This 
feature is decisive in semiparametric inference problems, where statistics are 
weighted averages of nonparametric estimates evaluated at data points, like 
in average derivatives (e.g., Powell et al., 1989, and Robinson, 1989), par­
tially linear models (e.g., Robinson, 1988), or when testing restrictions on 
nonparametric curves (e.g., Delgado and González-Manteiga, 2001.) 

There are several bias reduction techniques. The generalized jackknife 
(Schucany and Sommers, 1977) is a weighted average of kernel estimators 
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with different bandwidths. Weights and bandwidths depend on certain 
constants, which must be chosen by the practitioner. This method is related 
to AS! based on kernel s (see Example 1), which is al so a weighted average 
of kernel estimators with given weights <p~ and banwidths kH, k = 1, ... , r. 
Higher order kernels estimation is possibly the most popular bias reduction 
technique; see, e.g., Singh (1979), Gasser and Müller (1984), and Gasser 
et al. (1985), among others. Another popular alternative is local polynomial 
estimation; see, e.g., Stone (1977), Cleveland (1979), and Fan and Gijbels 
(1996). Terrell and Scott (1980) propose a bias reduction technique based 
on the ratio of two kernel estimators of order two. The resulting estimator 
is always positive but it does not integrate to one. 

The rest of the paper is organized as follows. In Section 2 we obtain 
universal global bounds. Section 3 establishes rates of convergence. Section 
4 discusses sorne examples. 

2. GLOBAL BIAS BOUNDS 

The expected value of an AS! estimator of order r, j~, is given by 

rx.';"n(f, x) = i:: <p~. f Kmn(u) f(x + ku) du, 
k=l 

where {rx.';,,} is a sequence of linear operators in Lp( ~d, lEEd, A). The AS! 
estimator ¿'f order r is globally asymptotically unbiased for all density func­
tions fE Lp( ~d, lEEd, ),) (i.e., j~ is "universally asymptotically unbiased" in 
Lp-norm) if 

lim IIE[J~(x)J-f(x)IIL(A)=lim 11rx.';"Cf;x)-f(x)IIL(A)=O, 
nEN P neN n p 

for any sequence {mn} nE F\J that diverges in ~. Note that we are considering 
a global convergence criteria in Lp-norm. This unbiasedness property is 
important, since we do not require smoothness assumptions to prove 
asymptotic unbiasedness. Smoothness conditions are only required to 
obtain rates of convergence for the bias. 

The next theorem pro vides a bound for the bias of AS! estimators. 
Henceforth, we use the smoothness modulus of order r E N in Lp( ~d, lEEd, A), 

defined as 

wr(f, Óh (A) = sup IILI~Cf; x)IILP)' 
p 0< Ilhll';;;o 
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where LI ~(f; x) = L~ ~ o ( - 1 Y - k (~) f( X + kh) is a higher order difference. 
Notice that wr(f" O)L (A) = 0, and for all fE Lp([p;d, lEEd, A), it is satisfied that 
lim6~0 wref; J)L (A) =='0. Define Um) = J IKm(z)1 Ilzlls dz for integers S;:: O. 

p 

Ila;;'(f; x) - f(x)IIL (A) ~ Ilf(x)(l-a~(I; x))IIL (A) 
p p 

with C= 1 +sUPmEn (o(m). 

Proa! By the triangle inequality, 

Ila;;'(f; x) - f(x)IIL (A) ~ Ilf(x)(a~(l; x) -1)IIL (A) + B;;', 
p p 

where 

B;;' = Ila;;'(f; x) - f(x) a~(I; x)IIL (A). 
p 

Noticing that a;;'(I; x) = a~(l; x) = J Km(z - x) dz all r> 1, and applying 
the integral Minkowsky's inequality and Fubini's theorem, 

B;;,=llfKm(Z).[(-I)I+rLl:(f;x)]dzll . 
Lp!'.) 

(1) 

(¡: Ilzll -,) (1 Ilzll)r (f -') 2(r-l) (1 Ilzllr) (f -,) 
W r 'Tu ~ +T ·Wr ,u LP!A)~ . +yr ·Wr ,u Lp(A)' 

(2) 

applying CT-inequality. Hence, (1) and (2) imply that for all J> 0, 

Br 2(r-l) (f; -,) ( y ( ) (r(m)) m ~ . W r ,u Lp(A)· sup <"0 m + ---;y- . 
mEn 

(3) 
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First assume that Um) > o and taking J = (r(m)l/r in (3) we obtain that 

B';" ~ 2(r-l) . (sup (o(m) + 1) . wr(f, (r(m)l/rh O,), 
mE ~ p 

Second, as sume that (r(m)=O. Then, by (3), for all J>O, 

B';" ~ 2(r-I). (sup (o(m) + O). wr(f; J)L (A)' 

meO P 

and taking <5 t O, B';" = O, which proves the theorem. I 
The next corollary provides sufficient conditions on {Km} for universally 

asymptotically unbiasedness. 

(i) sup (o(m) < 00, (ii) cx.~(l;x)=l, a.s. [.le], \fmE~, 
mEO 

(iii) lim C(m) =0. 
mEO 

Then J~ is universally asymptotically unbiased in Lp-norm. 

The proof is immediate from Theorem l. Conditions in Corollary 1 are 
satisfied for most {Km} sequences, as illustrated in the following examp1e 
for the popular kernel estimators. 

EXAMPLE 1. Let consider Kernels in Lp{ IR d
, IBd

, .le), with 

where the smoothing parameter m = H- 1 is a definite poslhve matrix, 
ordered by decreasing 11 H 11. The function K( . ) satisfies, (a) K E L¡ (lR d

, IBd, A), 
(b) J K(u) du= 1, (c) J IK(u)lllull' du< oo. Then, (a) and (b) guarantee (i) 
and (ii) in Corollary 1, and (c) implies (iii), since, 

(r(m) = det~H) f IK(H-1u)lllull
r 

du 

~ IIHllr. f IK(z)1 Ilzllr dz ~ O. 

Theorem 1 provides a bias bound for a general class of density 
estimators without assuming differentiability on the underlaying density 
function. Furthermore, this result can be usefu1 in order to establish rates 

5



of convergence for AS! estimators. For all fE Lp( ~d, lEEd, A), the rate of 
convergence of wr(f; c5) L (A) to zero when c51 ° depends on f smoothness. In 

p 

next section we show that AS! estimators can achieve the rate O(C(m)) 
when f is smooth enough. 

3. RATES OF CONVERGENCE 

Let W;(~d, IEEd,.Ie) be the Sobo1ev space of at 1east s-times weak1y 
differentiab1e functions with Lp -integrab1e derivatives. In this section we 
will prove that, if fE W;{ ~d, lEEd, A), then wr(f; c5) LP) = O( c5 r). However, 
the ratio O{ c5 r

) cannot be improved, as stated in the following proposition. 

PROPOSITION l. For al! non eonstant fE Lp{ ~d, lEEd, .le), :JCf > 0, su eh 
lhal, \fc5 E (O, 1), 

Proa! Using that f is not constant and the smoothing modu1us 
wr(f; lh(A) #0. Then, \fc5E{O, 1) 

p 

As usual, given v = (v¡, ... , Vd) with Ilvll¡ = r, define D~r(x) = 8r¡(x)/8 v,x¡ 
.. ·8VdXd, xV=xi""'X~d and v!=v¡! .. ·vdL Next, we present the main 
result of this section. 

111X;;'(f; x) - f(x) '1X~(1; x) IILP) ~ C· 2'-¡ . (r{m)· Cr 11 I DVf(x) 11 .). 

Ilvll, =r Lp(A) 

Proa! First consider d = l. It is known that 

see, e.g., Schumaker (1981, Eq.2.l09). Hence, app1ying the definition of 
smoothness modu1us wr(f, c5)L (A) ~ c5 r . IIDj(x)IIL (A)' the resu1t follows 
app1ying Theorem l. Now, we ~xtend this result t~ the d> 1 case. Define 
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F(u) = f(x + u· Id), continuous in u = O for almost everywhere x E IR. 
Consider e E IR, and 

,,1 ~(F; u) = k ~ o ( - 1 ) k - ¡ G) F( x + (u + k . e) . Id)' 

Then, 1I,,1;U; u)IIL(A):::;er IIDrF(u)IIL(A) holdsatu=O. NoticethatDrF(u)lu~o 
= Lllvll¡ ~r D'1(x): and P 

,,1~(F; u)lu~o = ± (-lt-¡ (~) F(x +k· (c, ... , en = ,,1(c, .... ,clt x). 
k~O 

Therefore, 1I,,1(c, .... , c)(f; x) IILP):::; er IILllvlll ~r D'1(x)IILP)' Define h = (c, .. ,., e)'. 
Then 

Applying the definition of smoothness modulus of order r, 

Finally, apply Theorem 1. I 

This result provides higher order rates of convergence for the bias when­
ever (r(m) tends to zero fas ter than (¡(m). This requirement is trivially 
satisfied for kernel estimators, where the rate of convergence to zero of 
( 11 H 11 r) increases exponentially with r (see Example 1.) 

It is straightforward to show that if fE W;( IRd, IRd, ,le), s < r, 

using the fact that wr(f; t5)L (A):::; t5 swr _Af; 15) with d = 1 (see, e.g., 
p 

Schumaker, 1981, Theorem 2.59) and extending this result to the multi-
variate case reasoning as in Theorem 2. 

Related results can al so be obtained when f satisfies some Lipschitz 
conditions. Consider the high order Lipschitz space, 

with r E N, r - 1 < Y < r. Applying Theorem 1, if fE Lip( y, r)p' then 
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In order to illustrate the bias properties of AS! estimators, it is useful to 
consider an alternative approach, based on the usual Taylor expansiono 
Assume thatf E W;(IJ~d, [Bd, A) and {Km} satisfies conditions in Corollary l. 
Then, 

f(x+ku)=f(x)+ri
l 

I ~(ku)" DVf(x) 
v! }=I IlvlI l =} 

1 1 
+ r I ,J (1- ty-I D'f(x + tku)(ku)" dt 

IlvlIl = r V. o 

almost everywhere for all k = 1, ... , r. Define cvm = J uVKm(u) du, possibly 
different than zero. Therefore, 

E[J~(x) ] - f(x) = ± <p~ foo Km(u)[f(x + ku) - f(x) ] du 
k=1 -00 

e D'f(x) ( r ) r 
= I I vm v! k~_I<P~k} +k~_I<p~k'R~m(X), 

}=I IIvlll=} 

r-I 

where 

1 foo JI R~m(x)=r I...., (l-ty-ID'f(x+tku)uVKm(u)dtdu. 
IIvlIl=r V. -00 o 

Noticing that L~= 1 <p~k) = O, all j = 1, ... , r - 1, and all r): 1, 

IIE[J~(x)J - f(x)IILpc) = 11 ± <p~krR~m(x) 11 = O(Sr(m)). (4) 
k=1 Lp(l) 

It is difficult to compare the exact bias of AS! estimators with other 
higher order methods. Assume that Km satisfies Cvm = O for all m and all v 
such that II viiI = 1, ... , r - l. For instance, it happens with higher arder 
kernels of order r. Then, the bias of the AS! estimator of order 1 is 

A comparison between (4) and (5), under general conditions, does not 
seem immediate. 

The next section discusses sorne examples. 
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4. EXAMPLES AND DISCUSSION 

In Example 1 we showed that (Jm) = O( IIHlI r) in the kernel case. This 
rate of convergence is also achieved by higher order kernels of order r. 
Furthermore, if K is a kernel of order r, the AS! of order r does not 
improve the rate of convergence of the AS! of order 1 (see (4) and (5)). In 
this situation, a comparison between the exact biases of both estimators is 
not irnmediate, but it is possible that an AS! of order r has lower bias than 
an AS! of smaller order, for sorne bandwidths, certain underlaying 
den sities, and kernel choices. Table 1 illustrates this point. We report biases 
in the univariate case (d = 1) for different va1ues of r and bandwidth H, 
when observations are standard normal and K is a Gaussian kernel of 
order 2. 

Though the rates of convergence for r = 1 and r = 2 are identical, bias for 
r = 2 is smaller for larger values of H. Such bias improvements were not 
found using a kernel of order 4. 

AS! kernel estimators can be computed easily from any kernel function 
K. The AS! kernel method can be of practical relevance when higher order 
kernels are unsuitable, or are difficult to compute. For instance, symmetric 
higher order kernels of order r (r even) are constructed solving r/2 moment 
equations and the resulting kernel has r/2 terms. However, with asym­
metric kernels, which are con si de red for purposes of boundary modification 
or change-point estimation (e.g., Gasser et al., 1985, and Müller 1991) r 
moment equations have to be solved, and the resulting higher order kernel 
has r terms, like the AS! estimator, which do not require to solve equa­
tions. Given any S! estimator designed for specific purposes, it can be 
transformed easily in an AS! estimator. Other AS! estimators that are not 
related to kerne1s can be considered. For instance, those based on Fejér, 
Jackson, Rogosinski, or de la Vallée Poussin windows. See Butzer and 

TABLE 1 

11 E[J~( x)] - f( x) 11 i
2
(Á) for ASI Estimator with a Gaussian Kernel of 
Order 2 When Xi ~ N(O, 1) 

r=1 r=2 r= 3 r=4 

H=1 2.090 x 10-2 7.409 X 10-3 1.540 X 10-2 2.603 X 10-2 

H=3/4 9.336 x 10-3 4.018 X 10-3 1.068 X 10- 2 1. 585x 10-2 

H= 1/2 2.485 x 10-3 2.485 x 10-3 4.231 X 10-3 3.943 X 10-3 

H= 1/4 1.914 x 10-4 4.973 X 10-4 1.722 X 10-4 2.422 X 10-5 

H= 1/8 1.266 x 10-5 4.517 x 10-5 1.596 X 10-6 2.150 X 10-7 

H=I/10 5.223 x 10-6 1.940 X 10-5 3.012 X 10-7 6.236 x 10-8 
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TABLE II 

2,-1. (,(m) Values for Different Values of m with Jackson's Window 

r=1 r=2 r=3 r=4 

m=50 2.649 x 10-2 2.420 X 10-3 6.294 X 10-4 1.198xlO-3 

m= lOO 1.324 x 10-2 6.026 X 10-4 8.663 X 10-5 1.498 X 10-4 

m=500 2.647 x 10-3 2.407 X 10-5 8.406 x 10-7 1.199 x 10-6 

Nessel (1971 ). The next examples illustrate the convergence rate 
improvements of AS! based on Jackson and Fejér windows. 

EXAMPLE 2. Let us consider the Jackson window in Lp[ -n, n], 

K ( ) = 3 ( sin(mu/2) )4 
m

U 
2nm(2m2+1) sin((l/2) U) . 

with m E N, which satisfies conditions in Corollary l. 

Table 1I provides 2'-¡ . (r(m) values for different values of m. Computa­
tions have been carried out by numerical integration. 

The rate improves as r increases when r~3. Notice that (3(m»(4(m) 
but 22(3(m) < 23(4(m). 

EXAMPLE 3. Let us consider the Fejér window in LA -n, n], 

1 (Sin((m + 1/2) U))2 
K m (u)=2n(m+l) sin((l/2) u) . 

with m E N, which satisfies conditions in Corollary 1. 

Table III provides 2r -¡ . (,(m) values for different values of m. 
The rate does not improve with r in this case. Notice that (¡(m»(2(m) 

but (¡(m) < 2(2(m). 

TABLE III 

2'-I.(,(m) Values for Different Values of m with Fejér's Window 

m=50 
m= 100 
m=500 

r=1 

0.0859 
0.0477 
0.0068 

r=2 

0.1087 
0.0549 
0.0110 

r= 3 

0.3945 
0.1992 
0.0402 

r=4 

1.7974 
0.9075 
0.1834 
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