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1. Introduction 

Let X , t= 0, ± I, ± 2, ... , be a covariance stationary time series with
t 

lag-j autocovariance '¥. = E(X.- E(X )(X - E(X )) and spectral density [(A) r J J 0 0 0 
satisfying ,¥.= [(A) cos(jA) dA, j= 0, I, .... It is assumed that X has 

tJ -n 
long range dependence, in the sense that 

[(A) - L(I/A) A2H-l as A ---+ 0+, (1.1) 

for 1/2 < H < I, where L(A) is slowly varying at infinity. In order to study 

the behaviour of [ at zero frequency, Robinson (1994 a, b) considered the 

averaged periodogram statistic 

m 
F(A ) = ~ '"' I(A,) (1.2)

m n.1.. J' 
J = 1 

-1 I~ itA I2 .where leA) = (2nn) L =1 X e , At 2nJ/n, and 1~ m< n/2. The I(A j) fort t 
1:s j< n are invariant to location-shift in X ' so no explicit mean correction

t 
is needed. The bandwidth number m is supposed to increase with n, but more 

slowly. 

When [(A) is smooth at A= 0, F(A )/A is a standard nonparametric estimate m m 
of [(0) (see e.g. Brillinger 1975). However, Robinson (1994 a) demonstrated 

the usefulness of FL) in case of (1.1). It can be used to consistently 

estimate H, even in the presence of Le.) of unknown formj it, and an analogous 

averaged cross periodogram, can be used to consistently estimate the 

coefficient in a stationary long-range dependent co-integrated systemj it can 

be used in consistent estimation of the limiting variance matrix of least 

squares estimates of regression coefficients in the presence of long-range 

dependent errors and certain types of regressorj it can be used to construct 

estimates with the same limiting distribution as efficient generalized least 

squares estimates of regression coefficients in the presence of long range 

dependent errors. In addition, the behaviour of (1.2) is of interest in case 

F(A ) is computed in the incorrect belief that [(0)< 00. 
m 
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As in the smooth spectrum case, and other problems of nonparametric 

estimation, the choice of bandwidth number m is important. Robinson 0994 b) 

derived an asymptotic approximation for the mean squared error 

1\ [t(A) - G(A ) ] 2MSE = E __m m_ , (1.3) 
G(A )

m 

where 

Z-ZH 
def ( ) A l-ZH 

G(A) = L +- W d w, 
2 - 2 H 

and also derived formulae for m which minimize this approximation. We can 

regard 0.3) as an analogue of the usual mean squared error criterion 

1(0) - [(0) 
0.4) 

[(0) 

employed in case 0< [(0) < 0:1, where 1(0) = t(A )lA . Taking LO/A) E [(0) and m m 
H= 1/2 in (1.3) gives 0.4). Delgado and Robinson (993) have further analyzed 

the approximation of (1.3), carried out numerical calculations, and provided 

feasible plug-in-versions of the optimal m. 

In 0.2) equal weights of the l(A.) are employed, but a weighted average of 
J 

periodograms is often considered in case of estimation of a smooth spectral 

density, in both the theoretical literature and in practice (see e.g. 

Brillinger 1975). Indeed, bearing in mind the asymptotic equivalence of 

averaged periodogram spectrum estimates and the weighted autocovariance 

spectrum estimates stressed in much of the earlier literature, there seems to 

have been much greater stress on choice of weighting function than on choice 

of bandwidth, as reflected for example by many texts on spectral analysis 

(e.g. Blackman and Tukey 1959; Grenander and Rosenblatt 1957; Brillinger 

1975). This contrasts with the problem of nonparametric probability density 

estimation and regression estimation, where interest has centred on the 

bandwidth problem. A likely reason for the concern with weighting in spectral 

analysis is the apparent great peakedness of many spectra, which causes 

difficulties in estimation both near peaks and, owing to leakage, at distant 
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frequencies. The same degree of peakedness is not commonly encountered in the 

study of probability density and regression functions. 

A long-range dependent time series has an especially peaked spectrum, and so 

it seems worthwhile to investigate the optimal choice of weighting in 

estimating spectral mass near the peak. Section 2 of the paper considers a 

weighted generalization of (1.2), indicates the form of the optimal minimum 

mean squared error bandwidth for this, and derives the weights which 

minimize the bandwidth-optimized mean squared error. Interestingly, the 

optimal weights tend to zero at the frequency of the spectral peak and thus 

differ radically from optimal weights in smooth nonparametric problems. 

2. Optimal weights 

Let K(~) be a real function, called a spectral window or kernel, such that 

00 

K(~) = K(-~), J IK(w) I d w (2.ll< 00. 

-00 

For the time being we specify no normalization for K(.). Define the 

coefficients 

taking it for granted that the integrals exist for relevant e and t/> values. 

For m as defined previously, introduce 

21l~ n-l 
mF (~ ) = r K (~J I(~ J, (2.2)

K m n . n J J
J=1 

where 

Notice that the Daniell (1948) kernel 
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(2.3) 

leads to t (A ) = t(A ), so that (2.2) generalizes 0.2). In fact t (A ) can 
K m m K m 

be thought of as estimating 

G (A ) = 2 Cl - H) G(A ) C 
K m 1-2H m 1-2H 

n 

1-2H 
= L( -i-) A 2-2H 

C 

m 1-2H 
n 

with the latter reducing to G(A ) under (2.3).
m 

Now consider the scaled mean squared error 

1\ [t (A ) - G (A) ] 2MSE = E __K__m K__m__ , 
K G (A )

K m 

which generalizes (1.3). For simplicity let X be Gaussian (though the resultst 
derived below hold more generally, cf Robinson 0994 b» and strengthen 0.1) 

to the assumption 

(2.4) 

for some He 0/2, 3/4), some exe (0, 2] and some E e (-ll), ll). We also
exH 

assume that f(A) is differentiable in a neighbourhood (0, e) for some E:> 0, 

and 

df(A) (2.5) 

dA 

Assumption (2.4) is an extension of the usual smoothness condition imposed 

in smooth spectral analysis, and for LeA) !i! C e CO, ll), and ex = 2, both (2.4) 
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and (2.5) are satisfied by two familiar models for long-range dependence, the 

"fractional noise" process with spectrum 

00 -2n-l 

I(A) = r(2H - I) 0 - cos A) E IA + 2nj I 
j=-oo 

and the "fractional ARIMA" process with spectrum 

I(A) 

where 0"2) 0, and a and b are polynomials of finite degree having no roots in 

or on the unit circle. 

Under conditions (2.4) and (2.5), and also (2.I) and 

1 m--+-- ~Oasn ~oo, (2.6)
m n 

a straightforward extension of results in Robinson 0994 b) indicates that 

d2-4H 2n [ C 1-2H+CX EcxH ] 2 A 2CX 
---- as n --+ 00. (2.7)c 2 -m-- + cx m c n 

1-2H 1-2H 

1\ 

Notice that MSE is free of the slowly varying function Le.), which can be 
k 

of unknown form. (2.7) reduces to Robinson's 0994 b) result 

in case KL) is given by (2.3). 

The property (2.6) implies that F (A )/G (A ) ~ I, and thence that 
K m K m 

F (A ) can be useful in the ways ascribed to hA ). Moreover, the right side 
K m m 

of (2.7) can be minimized with respect to m by 
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2«/(2CX+1)ID (H) n (2.8)
K 

Thus, choice of K does not affect the rate of convergence of the optimal 

m, but it does affect its scale factor. We can substitute (2.8) for m in (2.7) 

and then minimize again with respect to K. We accomplish this by the calculus 

of variations. We introduce the constraints 

1- 2H 1- 2H+CX 
1l 1l c = c = (2.9)

1-2H 1-2H+CX
2- 2H 2- 2H + cx 

which apply directly to the Daniell kernel (2.3). The Lagrangean is 

1 1 2 H CX 

d -2~ (c - 1l - 2H ] + 2 ~2 (c - +CX 1l__-__ _+___], 
2-4H 1 1-2H l 2H2- 2H 2- 2H + cx 

so, denoting by t1K(A) a small increment of K, we need 

00 00 00 
4H I 2H I 2H CXJ A

2
- K(A) t1K(A) dA - ~1 J A - t1K(A) dA + ~2 J A - + t1K(A) dA = 0, 
000 

that is 

Thus we take 

2H 1 CX
IAI - + , IAI 

(2.10) 

, IAI 

We deduce that 
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(a + 0 (2- 2H + a)l/a ~ (2- 2H+ a)
1 

~ 1 = --------------, ~2 = -a--------
2n2H a (2a+ 011a (2- 2H)I+lla n (2a+ 1) (2- 2H) 

In the short memory case, corresponding to H = 1/2, the optimal kernel 

(2.10) corresponds to the familiar kernel of Bartlett (1963); because the 

latter is calculated with the constraint c = I, instead of the first part of o 
(2.9), our version is flatter. For H>1/2, K(~) is bimodal and K(~) ---+ 0 as 

~~ 0, so that the contribution from the very lowest frequencies is being 

downweighted. This is consistent with the suggestion of KUnsch (1986) that, in 

semiparametric estimation of H, the periodogram at such frequencies be trimmed 

out due to their anomalous behaviour in case of long range dependence. 

Figure 1 plots the optimal K (2.10) for a = 2 (the leading choice of a in 

the smooth spectral analysis literature) with H= 0.6 and 0.7, along with, for 

the sake of comparison, the Daniell and Barltett kernels which are often used 

in spectral analysis. 

FIGURE 1 ABOUT HERE 

For general aE <0, 2], the scaled mean squared error evaluated at m=m (H)
K K 

is proportional to 

2a 2 

d 2a+l 2a+ 1 
c 

2-4H 1-2H+a 
(2.10

2 
C 

1-2H 

where the proportionality constant is identical for all kernels. For the 

optimal kernel (2.10). 

+ -:::-_1----:_) ~2 (~ I~ )1Ia
2a+1 112 
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2 l/CX(CX -cx-l) (CX+1) (2-2H+cx)
= (2.12) 

114H-l CX 2 (2cx+1) 1 +1ICX (2-2H) 2+ l/CX 

For the Daniell kernel 

1
d = (2.13)

2-4H 114H-l 2(3-4H) 

Figure 2 shows the relative efficiency of the Daniell kernel, calculated as 

the ratio of (2.11) for the Daniell kernel to (2.ll) for the optimal kernel 

(2.10) with cx=2; this is {{2. 12)/(2.13)}2CX!I2(X+l>, in view of (2.8). The 

Daniell kernel is satisfactory for the smallest values of H, but 

deteroriates significantly for larger H. 

FIGURE 2 ABOUT HERE 

We have also performed a small Monte Carlo experiment in order to compare 

MSE of estimates of G(i\ A based on the Daniell and the optimal kernels. We), m 
K 

report, in Table I, Monte Carlo efficiency for the Daniell kernel relative to 

the optimal kernel for different values of H. We have generated data according 

to a fractional Gaussian autoregressive process with spectrum 

1 2H 1
[(i\) = 2~ 11- eii\ 1 

with a = 0.5. We provide results for H= 0.6, 0.65 and 0.7. The Daniell 

kernel's efficiency falls off as H increases, and the optimal kernel is 

clearly superior when H= 0.7. For each H value, there is good stability across 

sample size. 

r
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TABLE 1 

Monte Carlo efficiencies of Daniell versus Optimal kernels for several H 
values and sample sizes, based on 5,000 replications. 

(MSE for Daniell kernel in parenthesis). 

n= 250 n= 500 n= 1000 

H= 0.60 0.7587 0.7167 0.7091 
(0.0658) (0.0420) (0.0251 ) 

H= 0.65 0.6239 0.5613 0.5706 
(0.0778) (0.0518) (0.0330) 

H= 0.70 0.4832 0.4003 0.3113 
(0.1036) (0.0742) (0.0514 ) 
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