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1. INTRODUCTION 

This paper describes and applies to real economic data some very recent 

developments in the analysis of time series. Consider a real-valued time 

series ~t' t=l,2, ... which is observed at t=1.2•...• n. We assume that ~t is at 

least covariance stationary so that the mean ~= E(~t) and the autocovariances 

do not depend on t. We also assume that there exists a spectral density given 

by 

-1 ~ 
f(i\)= (2n) Lj=_oo 1'j cos (j i\). -nS i\s n. 

,- '� 

Thus, it is assumed that any stochastic or non-stochastic trends have been 

removed from the raw observed time series. The models most frequently used in 

the analysis and forecasting of time series impose strong conditions on the 

rate of decay of the 1'j's as j tends to infinity. or equivalently. boundedness 

and strong smoothness conditions on f(i\). These models involve stronger 

conditions, than, on the one hand, the summability condition 

(1. 1) 

or the boundedness restriction 

f (0) < 00.� (1. 2) 

In particular, stationary autoregressive moving average (ARMA) models imply 

autocovariances that decay exponentially as j--+ 00. and a spectral density 

which is analytic at all frequencies. The ARMA models are the ones which have 

been most extensively studied and applied. but in fact there exist many other 

time series models which satisfy (1.1) and (1.2). 

Empirical observation. nevertheless. is sometimes consistent with models 

which do not satisfy (1.1) or (1.2). Figures 1 and 2 plot the sample 

autocovariances and periodogram for the differenced logs of the Spanish 

monthly general price index. recorded from July 1939 to October 1991 (see de 
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Ojeda Eiseley (1988) for a description of the series)2. Thus. we have n+1= 628 

observations. The original series. Pt' t=O. 1•...• appears nonstationary. but 

the series 

0.3) 

looks more stationary. Figure 1 plots the correlogram Pj = lj/lo' where lj is 

the sample autocovariance 

(1. 4) 

) 
1

where ~= n- ~=1 ~t' While the Pj do appear to decay as j increases. they do 

so slowly. in a manner that could be consistent with the failure of (1.1). 

Figure 2 plots the periodogram 

-1 I~ itA 12 (1. 5) 

.) 

I(A)= (21ln) Lt=1 ~t e J '. 

at frequencies A= A = 21lj/n. for j=l •...• (n-1)/2. Although 1(A) does notj 
provide a consistent estimate of f(A). smoothed versions of 1(A) used to ) 

estimate f(A) and the spectral peak as A approaches 0 suggests that (1.2) may 

fail (note that formula (1.5) is unaffected by a nonzero ~ when evaluated at 

frequency A for integer j).
J 

) 

Figures 1 and 2 about here 

..~=> .. 
Parametric models for stationary series which violate (1.1) and (1.2) have 

long been available. One of these is the "fractional noise" process with 

autocovariances 

2The series has been created llnklng 5 price Indeces for different periods and' 
with different basis. These series are not homogeneous. because the weights of 
the goods and the goods entering. differ from one Index to other. In order to 
link the series. certain linking coefficients were calculated based on the 
periods where two Indices overlap. Th~ components of the general (aggregate) 
price Index are the groups Food. No-food. Clothing. Housing. Domestic Goods 

and Other Goods. 
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(1. 6) 

where 

0< d < 1/2. (1. 7) 

It may be shown that 

" s:::: c J
2d-l

,as J ~ CIO, (1. 8)
J 

for some c satisfying 0< c< CIO. In view of (1.7) and (1.8), it is clear that 

(1.1) does not hold. It may also be shown that 

-2d +f (~) s:::: C ~ ,as ~ --+ 0 , (1. 9) 

for some C satisfying 0< C< CIO. In view of (1.7) and (1.9), it is clear that 

(1.2) also does not hold. We call series which violate (1.1) and (1.2) 

"long-memory". Early work on long-memory time series of B. Mandelbrot and his 

coauthors (see e.g. Mandelbrot and van Ness, 1968) stressed model (1.6). 

However, (1.6) is a very parsimonious model which implies that "J and f(~) 

decay monotonically as J and ~ increases, and these properties do not seem 

relevant in Figures 1 and 2. A much weaker class of parametric models are the 

autoregressive fractionally integrated moving averages, given by 

d
(l-L) a(L) (<<:t-Il)=b(L) et' t=1,2, ... , (1. 10) 

where L is the lag operator, a(.) and b(.) are polynomials of degree p and q 

respectively, having no roots in common or on the unit circle, and {et' t~ 1} 

is a sequence of uncorrelated random variables with zero mean and unknown, 

positive, finite variance v 2
• Again, it may be shown that (1.8) and (1.9) 

hold, and thus that (1.1) and (1.2) do not. The model contains the simple 
dmodel (l-L) (<<:t- Il)= et' considered by Adenstedt (1974), and has been applied 

in practice by a number of researchers. For suitable p and q, it can describe 
'. 

a variety of non-monotonic behavior in "0 and f(~), and thus has the potential 

to model the phenomena exhibited in Figures 1 and 2. However, correct choice 

of the autoregressive and moving average orders p and q is important; if 
" 

either is misspecified, then estimates of d in (1.10) are liable to be 
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inconsistent. The autoregressive and moving average components a(.) and be. ) 

are designed to model the short- and medium-run components of ~t' and it is 

unfortunate that their orders are important to the estimation of the long-run 

parameter d. 

The preceding discussion suggests that there are advantages in estimating d 

on the basis of the limiting relationships (1.8) and (1.9). These can be 

called "semiparametric" models because they parameterize only the long run 

characteristics of ~t' while allowing the short- and medium-run 

characteristics to· be nonparametric. There is a price to be paid in terms of 

efficiency in not using a correct parametric model, but when n is large the 

greater robustness of semiparametric model-based procedures is relevant. 

Several methods of estimating the semiparametric models (1.8) and (1.9) have 

been introduced or developed by Robinson (1990, 1991, 1992). These are 

described in the following section. In Section 3, applications of the methods 

to the Spanish price index series are reported. 

2. PARAMETER ESTIMATES 

In the current section four alternative estimates of the differencing 

parameter d are described, based on the relations (1.8) or (1.9). 
) 

1. Log autocovariance estimate 

Because (1.8), implies that the 7
j 

logs for large enough j, 

are eventually all positive, we can take .~. 

I 

log 7 
j 

~ log c + (2 d -1) log j, as j -+ 110. 

This relation has the advantage of being linear in d. Robinson (1990) proposed 

substituting r
j 

for 7
j 

and then carrying out an ordinary least squares 

regression of log r
j 

on log j for large j, with rj given in (1.4r. This leads 

to the estimate 
~) 
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r:-1 
log 7 (log j - log j) }

J=n-r J (2.1) 

- ~-1
where log j = Lj=n-r log j, and r is a large integer less than n. No 

asymptotic distributional properties of a seem yet to have been obtained. 
1 

However, it is anticipated that under (1.8) and additional regularity 

cond~tions, there exist sequences r increasing more slowly than n such that a 
is consistent for d. 

2. Minimum distance autocovariance estimate. 

Despite its computational advantages, a has the disadvantage that even if 
1 

the 7j are all positive for large J, some 7j can be negative, specially when 

7 j is close to zero. An alternative procedure due to Robinson (1990) is to 
~ 2d-lminimize the squared distance between 7 and c J for large J, so that d
J 

and c are estimated by 

(a , c )= argmin ~j-l (7 - c ld-l)2. (2.2)
2 2 c, d =n-r j 

Concentrating out c, we have 

a= argmax {~-1 ~ j2d-l}2/ ~-1 j2(2d-1>. (2.3)2 Lj=n-r 7j Lj=n-r
d 

The sets over which maximizationlminimization is carried out in (2.2) and 

(2.3) will be typically compact with respect to d, such as the interval 

[c, 1/2-c] for some small c. Again, no asymptotic properties of a seem yet to 
2 

have been obtained, but again it is likely that a2 is consistent for d, under 

regularity conditions and for a suitable sequence r. 

3. Averaged periodogram estimate. 

An estimate of d which has been shown to be consistent for d, and under mild 

conditions, is due to Robinson (1991). This estimate is based on the limiting 

relation (1.9) for f(~), rather than on (1.8). Incidentally, while both (1.8) 

and (1.9) hold simultaneously in case of the parametric models (1.6) and 

5 



(1.10), these properties are not precisely equivalent, and in particular 

(1.9), unlike (1.8), does not imply that the autocovariances r are all
J 

eventually positive. The estimate of d of Robinson (1991) employs an average 
Jof the periodogram (1.5) near zero frequency, 

where m is a positive integer less than n. Robinson (1991) showed under 

regularity conditions and the condition that m ~ m and m/n ~ 0 as n ~ m, 

that 

--+ p1, as A --+ 0+ , (2.4) 
.J 

indicating convergence in probability to the right hand side. Now for a 

constant qe (0,1) we likewise have 

0- 2d) F(q A )1 C ( A )l-d --+ 1, as A --+ 0+. (2.5)m q m p 

Differencing the logs of (2.4) and (2.5) eliminates the scale factor C and 

suggests the estimate 

a= 1/2 - log (F(q A )/F(A »/(2log q). (2.6)
3 m m 

)
Then Robinson (1991) showed that a is consistent for d under the same 

3 

conditions as those underlying (2.4). Incidentally, these conditions seem 

mild, including only a moment condition on ~ of degree 2. 

4. Log-periodogram regression estimate. 

Unfortunately no limiting distribution theory is yet available for the 

averaged periodogram estimate a , and Robinson (1991) conjectured that though
3 

it may be asymptotically normal for 0< d< 1/4. it may be asymptotically 

non-normal for 1/4 ~ d< 1/2, and thus rather difficult to use as a basis for 

statistical inference. An alternative semiparametric estimate of d, using the 

periodogram, was proposed by Geweke and Porter-Hudak (1983). They proposed 

regressing log ](A ) on - log (4 sin2 A /2l over frequencies A • J= 1, ... ,m. 
) 

J J J
The resulting d estimate is 

) 
6 



(', 

d =  (2.7)
4 

( 

( 

,. ,. 

Geweke and Porter-Hudak (1983) attempted a proof of asymptotic statistical 

properties of d only in case -0.5 < d < 0 (in which f(~) is zero, not 
. 4 

infinity, at zero frequency), but even in this case their proof was incorrect 

as shown by Robinson (1992). Following a suggestion of KUnsch (1986) that the 

very lowest frequencies be omitted from the regression, Robinson (1992) 

established the consistency and asymptotic normality of the estimate 

d = - 1/2 (2.8)
4 

where t is a "trimming number" which tends to infinity with m, but more 

slowly, where again m tends to infinity slower than n. (Note that 4 sin2 A/2 ~ 

2 + 
~ as A ~ 0 , so there is not great significance in the use, in (2.8), of 

-210g A
j 

as regressor in place of - log (4 sin2 
~j/2) in (2.9)). 

Specifically, Robinson (1992) showed that 

2mt/2 (dA - d) N(O4 ~d ,n2/6 ) , (2.9) 

The major drawback in the statistical theory provided by Robinson (1992) is 

that Gaussianity of ~t was assumed, unlike in the consistency proof of d · 
3 

3. APPLICATION TO SPANISH INFLATION RATE 

In this section we report applications of the several semiparametric methods 

of estimating d to the differenced log price series whose autocorrelations and 

periodogram were displayed in Figures 1 and 2. 

The bumps in the periodogram in Figure 2 at higher frequencies are 

suggestive of some seasonal effects. Results for the seasonally differenced 
12 12series (l-L ) Pt and (l-L) (l-L ) Pt were also obtained but are not 
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reported. The bumps are not very large and not inconsistent with assumption 

(1.9), and possibly too small to warrant seasonal differencing. 

There is an obvious problem with the application of a , that even for large
1 

J many of the 7
J 

in Figure 1 are negative, while the model calls for all 

positive 7
J 

for large enough J up to n-l. Thus a 
1 

is not operational here, 

ind~ed Figure 1 may suggest that the eventually positive 7 implication of
J 

(1.8)� is unsatisfied. At the same time, it may be the case that the negative 

for J larger than about 350 are very close to zero and thus possibly not
J 

significantly negative. However, for an interval of "large" J values between 

J=416 though J=456 all 7
J 

are positive, so one could "trim out" the 7
J 

for J> 

456 from a . Figure 3 displays a for r= 456-440= 16 through r=456-416= 40 
1� 1 

with n-1 the upper limit of summation in a , replaced by 456. The estimates 
1 

presented in this figure are very different from those obtained with the other 

three methods. 

Figure 3 about here 

Next, a was implemented. Now the negative autocorrelations cause no 
2 

problem and Figure 4 presents the results for r=540 through r=572. The d 

estimates are similar to those using a , when r is in the interval (547, 569).
4 

The d estimates in this interval vary between 0.37 and 0.41. Outside this 

interval, the d estimates seem unreliable, varying monotonically with r. 

Figure 4 about here 

The averaged periodogram estimate was computed for three different values of 

b, b= 0.25, 0.5 and b= 0.75, and for m between 17 and 300. The results are 

in Figure 5. Positive estimates of d were obtained throughout, usually ones 

about 0.3, suggestive of a substantial degree of long memory. However, there 

is also a substantial degree of volatility for m less than 70 in case of 

b=0.25 and in case of the other values of b for somewhat smaller values of m. 

Even for the larger values of m, there is a fairly notable sensitivity to b, 

though the estimates do seem to stabilize to values between about 0.3 and 

0.35. 
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Figure 5 about here( 

Results for the log-periodogram regression estimates a are displayed in the 
4 

upper part of Figure 6, for values t= 0,2,4,,8 of the trimming number and m c. 
between 70 and 311. The estimates are not very sensitive to t. The estimate is 

very unstable for m's in the interval (70, 113). However, there is a 

reasonable degree of stability over m, when m> 113. All the estimates were 

above 0.34 and in the lower part of Figure 6, t-ratios based on the central 

limit result (2.9) are displayed suggesting, that d is significantly larger 

than zero. 

The results described above, consistently suggest that this inflation 

series suffers from long-memory. We fractionally differenced the inflation 

rate series with a d= 0.38. The correlogram and periodogram for the resulting 

filtered series e = (1- L)O.3B ~t' t>O, are plotted in Figures 7 and 8. Thet 
autocorrelation estimates are very close to zero. However, the seasonal peaks 

are still present. 

Figure 7 and 8 about here 

Figures 9 and 10, show the averaged periodogram and log-periodogram d 

estimates for the et series. The values of m used are the same as in the 

application to the original series. The d estimates employing both methods are 

very close to zero. The t-ratios showed in Figure 10, based on the 

log-periodogram estimate, are all below the asymptotic normal critical values 

at 1% of significance. Thus, it seems that the long-memory has been removed 

by the fractional differencing. 

Figure 9 and 10 about here 
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