2,571,487 research outputs found

    Experimental reconstruction of photon statistics without photon counting

    Full text link
    Experimental reconstructions of photon number distributions of both continuous-wave and pulsed light beams are reported. Our scheme is based on on/off avalanche photodetection assisted by maximum-likelihood estimation and does not involve photon counting. Reconstructions of the distribution for both semiclassical and quantum states of light are reported for single-mode as well as for multimode beams.Comment: Revised version: in press on PRL. 4 pages, 4 fig

    High-Resolution 4.7 Micron Keck/NIRSPEC Spectra of Protostars. II. Detection of the ^(13)CO Isotope in Icy Grain Mantles

    Get PDF
    The high-resolution (R = 25,000) infrared M-band spectrum of the massive protostar NGC 7538 IRS 9 shows a narrow absorption feature at 4.779 ÎŒm (2092.3 cm^(-1)) that we attribute to the vibrational stretching mode of the ^(13)CO isotope in pure CO icy grain mantles. This is the first detection of ^(13)CO in icy grain mantles in the interstellar medium. The ^(13)CO band is a factor of 2.3 narrower than the apolar component of the ^(12)CO band. With this in mind, we discuss the mechanisms that broaden solid-state absorption bands. It is shown that ellipsoidally shaped pure CO grains fit the bands of both isotopes at the same time. Slightly worse but still reasonable fits are also obtained by CO embedded in N_2-rich ices and thermally processed O_2-rich ices. In addition, we report new insights into the nature and evolution of interstellar CO ices by comparing the very high resolution multicomponent solid ^(12)CO spectrum of NGC 7538 IRS 9 with that of the previously studied low-mass source L1489 IRS. The narrow absorption of apolar CO ices is present in both spectra but much stronger in NGC 7538 IRS 9. It is superposed on a smooth broad absorption feature well fitted by a combination of CO_2 and H_2O-rich laboratory CO ices. The abundances of the latter two ices, scaled to the total H_2O ice column, are the same in both sources. We thus suggest that thermal processing manifests itself as evaporation of apolar ices only and not the formation of CO_2 or polar ices. Finally, the decomposition of the ^(12)CO band is used to derive the ^(12)CO/^(13)CO abundance ratio in apolar ices. A ratio of ^(12)CO/^(13)CO = 71 ± 15 (3 σ) is deduced, in good agreement with gas-phase CO studies (~77) and the solid ^(12)CO_2/^(13)CO_2 ratio of 80 ± 11 found in the same line of sight. The implications for the chemical path along which CO_2 is formed are discussed

    Isotope effect on the superfluid density in conventional and high-temperature superconductors

    Full text link
    We investigate the isotope effect on the London penetration depth of a superconductor which measures nS/m∗n_S/m^*, the ratio of superfluid density to effective mass. We use a simplified model of electrons weakly coupled to a single phonon frequency ωE\omega_E, but assume that the energy gap Δ\Delta does not have any isotope effect. Nevertheless we find an isotope effect for nS/m∗n_S/m^* which is significant if Δ\Delta is sufficiently large that it becomes comparable to ωE\omega_E, a regime of interest to high TcT_c cuprate superconductors and possibly other families of unconventional superconductors with relatively high TcT_c. Our model is too simple to describe the cuprates and it gives the wrong sign of the isotope effect when compared with experiment, but it is a proof of principle that the isotope effect exists for nS/m∗n_S/m^* in materials where the pairing gap and TcT_c is not of phonon origin and has no isotope effect.Comment: 9 pages, 6 figure

    Graded Hecke algebras for disconnected reductive groups

    Get PDF
    We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lusztig for connected G. We develop the representation theory of the algebras H. obtaining complete and canonical parametrizations of the irreducible, the irreducible tempered and the discrete series representations. All the modules are constructed in terms of perverse sheaves and equivariant homology, relying on work of Lusztig. The parameters come directly from the data (G,M,L) and they are closely related to Langlands parameters. Our main motivation for considering these graded Hecke algebras is that the space of irreducible H-representations is canonically in bijection with a certain set of "logarithms" of enhanced L-parameters. Therefore we expect these algebras to play a role in the local Langlands program. We will make their relation with the local Langlands correspondence, which goes via affine Hecke algebras, precise in a sequel to this paper.Comment: Theorem 3.4 and Proposition 3.22 in version 1 were not entirely correct as stated. This is repaired in a new appendi

    Characterization of the Noise in Secondary Ion Mass Spectrometry Depth Profiles

    Full text link
    The noise in the depth profiles of secondary ion mass spectrometry (SIMS) is studied using different samples under various experimental conditions. Despite the noise contributions from various parts of the dynamic SIMS process, its overall character agrees very well with the Poissonian rather than the Gaussian distribution in all circumstances. The Poissonian relation between the measured mean-square error (MSE) and mean can be used to describe our data in the range of four orders. The departure from this relation at high counts is analyzed and found to be due to the saturation of the channeltron used. Once saturated, the detector was found to exhibit hysteresis between rising and falling input flux and output counts.Comment: 14 pages, 4 postscript figures, to appear on J. Appl. Phy

    Fast and robust two-qubit gates for scalable ion trap quantum computing

    Full text link
    We propose a new concept for a two-qubit gate operating on a pair of trapped ions based on laser coherent control techniques. The gate is insensitive to the temperature of the ions, works also outside the Lamb-Dicke regime, requires no individual addressing by lasers, and can be orders of magnitude faster than the trap period

    State reconstruction by on/off measurements

    Get PDF
    We demonstrate a state reconstruction technique which provides either the Wigner function or the density matrix of a field mode and requires only avalanche photodetectors, without any phase or amplitude discrimination power. It represents an alternative, of simpler implementation, to quantum homodyne tomography.Comment: 6 pages, 4 figures, revised and enlarged versio
    • 

    corecore