194 research outputs found

    Practical decoy state method in quantum key distribution with heralded single photon source

    Get PDF
    We propose a practical decoy state method with heralded single photon source for quantum key distribution (QKD). In the protocol, 3 intensities are used and one can estimate the fraction of single-photon counts. The final key rate over transmission distance is simulated under various parameter sets. Due to the lower dark count than that of a coherent state, it is shown that a 3-intensity decoy-state QKD with a heralded source can work for a longer distance than that of a coherent state.Comment: 10 pages, 4 Postscript figure

    Supramolecular interactions in clusters of polar and polarizable molecules

    Full text link
    We present a model for molecular materials made up of polar and polarizable molecular units. A simple two state model is adopted for each molecular site and only classical intermolecular interactions are accounted for, neglecting any intermolecular overlap. The complex and interesting physics driven by interactions among polar and polarizable molecules becomes fairly transparent in the adopted model. Collective effects are recognized in the large variation of the molecular polarity with supramolecular interactions, and cooperative behavior shows up with the appearance, in attractive lattices, of discontinuous charge crossovers. The mean-field approximation proves fairly accurate in the description of the gs properties of MM, including static linear and non-linear optical susceptibilities, apart from the region in the close proximity of the discontinuous charge crossover. Sizeable deviations from the excitonic description are recognized both in the excitation spectrum and in linear and non-linear optical responses. New and interesting phenomena are recognized near the discontinuous charge crossover for non-centrosymmetric clusters, where the primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure

    Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion

    Full text link
    The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure

    A photonic quantum information interface

    Full text link
    Quantum communication is the art of transferring quantum states, or quantum bits of information (qubits), from one place to another. On the fundamental side, this allows one to distribute entanglement and demonstrate quantum nonlocality over significant distances. On the more applied side, quantum cryptography offers, for the first time in human history, a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecom optical fibres makes the wavelengths of 1310 and 1550 nm particulary suitable for distribution over long distances. However, to store and process quantum information, qubits could be encoded into alkaline atoms that absorb and emit at around 800 nm wavelength. Hence, future quantum information networks made of telecom channels and alkaline memories will demand interfaces able to achieve qubit transfers between these useful wavelengths while preserving quantum coherence and entanglement. Here we report on a qubit transfer between photons at 1310 and 710 nm via a nonlinear up-conversion process with a success probability greater than 5%. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1550 nm, initially entangled with the 1310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98%.Comment: 7 pages, 3 figure

    Specific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection of Sulforhodamine Dyes

    Get PDF
    Fluorescent staining of astrocytes without damaging or interfering with normal brain functions is essential for intravital microscopy studies. Current methods involved either transgenic mice or local intracerebral injection of sulforhodamine 101. Transgenic rat models rarely exist, and in mice, a backcross with GFAP transgenic mice may be difficult. Local injections of fluorescent dyes are invasive. Here, we propose a non-invasive, specific and ubiquitous method to stain astrocytes in vivo. This method is based on iv injection of sulforhodamine dyes and is applicable on rats and mice from postnatal age to adulthood. The astrocytes staining obtained after iv injection was maintained for nearly half a day and showed no adverse reaction on astrocytic calcium signals or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows to quantify 3D morphological parameters of the astrocytes and to characterize their network. Our method may become a reference for in vivo staining of the whole astrocytes population in animal models of neurological disorders

    Україна – Канада: сучасні наукові студії

    Get PDF
    The materials of the international collective monograph show the latest Ukrainian-Canadian socio-political, historical, philological, cultural, educational and pedagogical research in the field of modern Canadian Studies. The monograph includes the investigations by several scientists from Ukraine and Canada (from Edmonton, Lutsk, Kyiv, Lviv, and Sumy). Such publication comes out in Ukraine for the first time. For scholars, postgraduates and doctoral students, undergraduates and lecturers of the faculties of international relations, foreign philology, history, political science, philology and journalism, education and social work, Canadian centres in Ukraine and centres of Ukrainian Studies in Canada, as well as for anyone interested in research of Ukrainian-Canadian relations

    Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)

    Get PDF

    Taking Two-Photon Excitation to Exceptional Path-Lengths in Photonic Crystal Fiber

    Get PDF
    The well-known, defining feature of two-photon excitation (TPE) is the tight, three-dimensional confinement of excitation at the intense focus of a laser beam. The extremely small excitation volume, on the order of 1 μm3 (1 femtoliter), is the basis of far-reaching applications of TPE in fluorescence imaging, photodynamic therapy, nanofabrication, and three-dimensional optical memory. Paradoxically, the difficulty of detecting photochemical events in such a small volume is a barrier to the development of the two-photon-activated molecular systems that are essential to the realization of such applications. We show, using two-photon-excited fluorescence to directly visualize the excitation path, that confinement of both laser beam and sample solution within the 20 μm hollow core of a photonic crystal fiber permits TPE to be sustained over an extraordinary path-length of more than 10 cm, presenting a new experimental paradigm for ultrasensitive studies of two-photon-induced processes in solution. (Figure Presented).We are grateful to the Koerber Foundation (Germany) and the EPSRC (UK) for financial support. G.O.S.W. is a recipient of an EPSRC Prize Postdoctoral Fellowshi

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events
    corecore