372 research outputs found

    Androgen deprivation therapy (castration therapy) and pedophilia: What's new

    Get PDF
    Andrology is a constantly evolving discipline, embracing social problems like pedophilia and its pharmacological treatment. With regard to chemical castration, the andrologist may perform an important role as part of a team of specialists. At present, no knowledge is available regarding hormonal, chromosomal or genetic alterations involved in pedophilia. International legislation primarily aims to defend childhood, but does not provide for compulsory treatment. We reviewed international literature that, at present, only comprises a few reports on research concerning androgen deprivation. Most of these refer to the use of leuprolide acetate, rather than medroxyprogesterone and cyproterone acetate, which present a larger number of side effects. Current opinions on chemical castration for pedophilia are discordant. Some surveys confirm that therapy reduces sexual thoughts and fantasies, especially in recidivism. On the other hand, some authors report that chemical castration does not modify the pedophile's personality. In our opinion, once existing legislation has changed, andrologists could play a significant role in the selection of patients to receive androgen deprivation therapy, due in part to their knowledge about its action and side effects

    Commentary: Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep.

    Get PDF
    We read with interest the paper by Lecci et al. (2017), who showed oscillations of the electroencephalographic (EEG) spectral power in the sigma band (10\u201315 Hz) during non-rapid-eye-movement (NREM) sleep at frequencies in the infra-slow range (ISO = 0.001\u20130.1 Hz). The occurrence of this rhythm (sigma-ISO) in human subjects and mice, and its correlation with autonomic and behavioral components suggest that it reflects a fundamental physiological mechanism

    Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads

    Get PDF
    Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a “pharmaceutical” POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. © 2017 Elsevier Lt

    Highly diastereoselective entry into chiral spirooxindole-based 4-methyleneazetidines via formal [2+2] annulation reaction

    Get PDF
    We describe here a diastereoselective, DABCO-catalyzed reaction of allenoates with chiral N-tert-butanesulfinyl ketimines derived from isatin

    Post-sigh sleep apneas in mice: Systematic review and data-driven definition

    Get PDF
    Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake\u2013sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively

    Influence of the Vertex Region on Spin Dynamics in Artificial Kagome Spin Ice

    Get PDF
    We present experimental and theoretical studies of spin-wave mode dynamics in artificial kagome spin ice vertices made of three identical 15-nm thick elongated Ni80Fe20 nanoislands (macrospins). We consider several possible configurations, from completely disjointed macrospins (full dipolar interelement interactions) to fully jointed macrospins (full dipolar-exchange interactions). Using angular-resolved magnetic field dependent broadband ferromagnetic resonance (FMR), we demonstrate the occurrence of a mode localized in the vertex region as indicated by the distinct behavior of the FMR spectra at different angles and configurations. Theoretical calculations using micromagnetic simulations support the existence, origin, and behavior of this mode by interpreting it as a localized, quasi-uniform Kittel mode. Our findings pave the way for designing the most appropriate network consisting of ferromagnetic nanomagnets for specific application purposes in magnonics

    Suppression of the spin waves nonreciprocity due to interfacial Dzyaloshinskii Moriya interaction by lateral confinement in magnetic nanostructures

    Full text link
    Despite the huge recent interest towards chiral magnetism related to the interfacial Dzyaloshinskii Moriya interaction (iDMI) in layered systems, there is a lack of experimental data on the effect of iDMI on the spin waves eigenmodes of laterally confined nanostructures. Here we exploit Brillouin Light Scattering (BLS) to analyze the spin wave eigenmodes of non-interacting circular and elliptical dots, as well as of long stripes, patterned starting from a Pt(3.4 nm)/CoFeB(0.8 nm) bilayer, with lateral dimensions ranging from 100 nm to 400 nm. Our experimental results, corroborated by micromagnetic simulations based on the GPU-accelerated MuMax3 software package, provide evidence for a strong suppression of the frequency asymmetry between counter-propagating spin waves (corresponding to either Stokes or anti-Stokes peaks in BLS spectra), when the lateral confinement is reduced from 400 nm to 100 nm, i.e. when it becomes lower than the light wavelength. Such an evolution reflects the modification of the spin wave character from propagating to stationary and indicates that the BLS based method of quantifying the i-DMI strength from the frequency difference of counter propagating spin waves is not applicable in the case of magnetic elements with lateral dimension below about 400 nm.Comment: Accepted for pubblication by: Physical Review

    Asymmetric Ugi 3CR on isatin-derived ketimine: Synthesis of chiral 3,3-disubstituted 3-aminooxindole derivatives

    Get PDF
    An efficient Ugi three-component reaction of a preformed chiral ketimine derived from isatin with various isonitrile and acid components has been developed. The reactions proceeded smoothly and in a stereocontrolled manner with regard to the new center of the Ugi products due to the stereoinduction of the amine chiral residue. A wide variety of novel chiral 3,3-disubstituted 3-aminooxindoles were obtained, a selection of which were subjected to post-Ugi transformations, paving the way to application as peptidomimetics

    Organocatalytic access to enantioenriched spirooxindole-based 4-methyleneazetidines

    Get PDF
    This work describes the synthesis of enantioenriched spiro compounds, incorporating the azetidine and the oxindole motifs. The preparation relies on a formal [2 + 2] annulation reaction of isatin-derived N-tert-butylsulfonyl ketimines with allenoates. The asymmetric induction is secured by an organocatalytic strategy, exploiting a bifunctional cinchona-type \uce\ub2-isocupridine-based catalyst. Some post-transformation products, including unexpected spiropyrroline and 3,3-disubstituted oxindole derivatives, are also presented
    • …
    corecore