2,811 research outputs found

    The pixel Fast-OR signal for the ALICE trigger in p-p collisions

    Get PDF
    The silicon pixel detector of the ALICE experiment at LHC comprises the two innermost layers of the inner tracking system of the apparatus. It contains 1200 readout chips, each of them corresponding to a 8192 pixel matrix. The single chip outputs a digital Fast-OR signal which is active whenever at least one of the pixels in the matrix records a hit. The 1200 Fast-OR output signals can be used to implement a unique triggering capability: few details on the pixel trigger system and some of the possible applications for p-p collisions are presented

    The Level 0 Pixel Trigger System for the ALICE experiment

    Get PDF
    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers. Multi-channel G-Link receivers were realized in programmable hardware and tested. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper

    Fractal-based autonomous partial discharge pattern recognition method for MV motors

    Get PDF
    On-line partial discharge (PD) monitoring is being increasingly adopted to improve the asset management and maintenance of medium-voltage (MV) motors. This study presents a novel method for autonomous analysis and classification of motor PD patterns in situations where a phase-reference voltage waveform is not available. The main contributions include a polar PD (PPD) pattern and a fractal theory-based autonomous PD recognition method. PPD pattern that is applied to convert the traditional phase-resolved PD pattern into a circular form addresses the lack of phase information in on-line PD monitoring system. The fractal theory is then presented in detail to address the task of discrimination of 6 kinds of single source and 15 kinds of multi-source PD patterns related to motors, as outlined in IEC 60034. The classification of known and unknown defects is calculated by a method known as centre score. Validation of the proposed method is demonstrated using data from laboratory experiments on three typical PD geometries. This study also discusses the application of the proposed techniques with 24 sets of on-site PD measurement data from 4 motors in 2 nuclear power stations. The results show that the proposed method performs effectively in recognising not only the single-source PD but also multi-source PDs

    Substantiation of increasing the longitudinal slopes on the example of career PJSC "Poltava mining"

    Get PDF
    В работе проведено экономическое исследование влияние применения усовершенствованных конструкций автосамосвалов в карьере, а также обоснование перехода на повышенный продольный уклон автодорог на сокращение технологического объема необходимых вскрышных работ.In this paper we conducted economic study of influence of application of improved designs of dump trucks in the pit. as well as the justification for the transition to higher longitudinal gradient of roads to reduce the amount of necessary technological stripping operations

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    The ALICE Silicon Pixel Detector Control system and online calibration tools

    Get PDF
    The ALICE Silicon Pixel Detector (SPD) contains nearly 107 hybrid pixel cells. The operation of the SPD requires online control and monitoring of some 2000 parameters and » 50000DACs. Information for each channel is stored in a configuration database. Timing and data management (» 6GB of raw data each calibration) are critical issues. An overview of the SPD electronics read out chain and of the detector control system is given with a detailed description of the front-end controls and the calibration strategy. The status of commissioning and a preliminary evaluation of detector performance are presented

    Timing in the ALICE trigger system

    Get PDF
    In this paper we discuss trigger signals synchronisation and trigger input alignment in the ALICE trigger system. The synchronisation procedure adjusts the phase of the input signals with respect to the local Bunch Crossing (BC) clock and, indirectly, with respect to the LHC bunch crossing instant. The synchronisation delays are within one clock period: 0-25 ns. The alignment assures that the trigger signals originating from the same bunch crossing reach the processor logic in the same clock cycle. It is achieved by delaying signals by an appropriate number of full clock periods. We propose a procedure which will allow us to nd alignment delays during the system con guration, and to monitor them during the data taking

    The ALICE trigger electronics

    Get PDF
    The ALICE trigger system (TRG) consists of a Central Trigger Processor (CTP) and up to 24 Local Trigger Units (LTU) for each sub-detector. The CTP receives and processes trigger signals from trigger detectors and the outputs from the CTP are 3 levels of hardware triggers: L0, L1 and L2. The 24 sub-detectors are dynamically partitioned in up to 6 independent clusters. The trigger information is propagated through the LTUs to the Front-end electronics (FEE) of each sub-detector via LVDS cables and optical fibres. The trigger information sent from LTU to FEE can be monitored online for possible errors using the newly developed TTCit board. After testing and commissioning of the trigger system itself on the surface, the ALICE trigger electronics has been installed and tested in the experimental cavern with appropriate ALICE experimental software. Testing the Alice trigger system with detectors on the surface and in the experimental cavern in parallel is progressing very well. Currently one setup is used for testing on the surface; another is installed in experimental cavern. This paper describes the current status of ALICE trigger electronics, online error trigger monitoring and appropriate software for this electronics

    Prospects for K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu } at CERN in NA62

    Full text link
    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu }, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV/c.The detector and analysis technique are described here.Comment: 8 pages for proceedings of 50 Years of CP

    The ALICE silicon pixel detector read-out electronics

    Get PDF
    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracker system. The SPD contains 10 million pixels segmented in 120 detector modules (half staves), which are connected to the offdetector electronics with bidirectional optical links. Raw data from the on-detector electronics are sent to 20 FPGA-based processor cards (Routers) each carrying three 2-channel linkreceiver daughter-cards. The routers process the data and send them to the ALICE DAQ system via the ALICE detector data link (DDL). The SPD control, configuration and data monitoring is performed via the VME interface of the routers. This paper describes the detector readout and control via the off-detector electronics
    corecore