12 research outputs found

    Permafrost conditions in the Mediterranean region since the Last Glaciation.

    Get PDF
    Cold-climate geomorphological processes today in the Mediterranean region are only distributed in the highest mountain environments. However, climate condition prevailing during the Late Pleistocene and Holocene have conditioned significant spatio-temporal variations of the glacial and periglacial domain in these mountains, including permafrost. In this communication we examine permafrost condition in the Mediterranean region taking into account five periods: Last Glaciation, deglaciation, Holocene, Little Ice Age (LIA) and present-day. The distribution of currently inactive permafrost-derived landforms and sedimentary records indicates that the permafrost elevation during the Last Glaciation was ca. 1000 m lower than present. Permafrost was also widespread in non-glaciated slopes above the snowline forming rock glaciers and block streams, as well as in relatively flat summit areas where meter-sized stone circles developed. As in most areas of the Northern Hemisphere, the deglaciation in the Mediterranean region started ca. 19-20 ka. The exposed terrain by retreating glaciers was affected by paraglacial dynamics and intense periglacial processes, mostly associated with permafrost condition. Many rock glaciers, protalus lobes and block streams formed in these recently deglaciated environments, becoming gradually inactive as temperatures rose during the Bølling-Allerød. Following the Younger Dryas glacial advance, the last massive deglaciation in Mediterranean mountains took place during the Early Holocene together with a progressive shift of the periglacial belt to higher elevations. It is unlikely that widespread permafrost have existed in Mediterranean mountains during the Holocene, except in the highest massifs exceeding 2500-3000 m. The colder climate prevailing during the LIA favoured a minor glacial advance and the spatial expansion of permafrost, with the development of new protalus lobes and rock glaciers in the highest massifs. Finally, the warming started during the second half of the 19th century has led to glacial retreat and/or complete melting, increased paraglacial activity, migration of periglacial processes to the highest lands and degradation of alpine permafrost along with geoecological changes

    200 years of equilibrium-line altitude variability across the European Alps (1901−2100)

    Get PDF
    Mountain glaciers are key indicators of climate change. Their response is revealed by the environmental equilibrium-line altitude (ELA), i.e. the regional altitude of zero mass balance averaged over a long period of time. We introduce a simple approach for distributed modelling of the environmental ELA over the entire European Alps based on the parameterization of ELA in terms of summer temperature and annual precipitation at a glacier. We use 200 years of climate records and forecasts to model environmental ELA from 1901 to 2100 at 5 arcmin grid cell resolution. Historical environmental ELAs are reconstructed based on precipitation from the Long-term Alpine Precipitation reconstruction (LAPrec) dataset and temperature from the Historical Instrumental climatological Surface Time series of the greater Alpine region (HISTALP). The simulations of future environmental ELAs are forced with high-resolution EURO-CORDEX regional climate model projections for the European domain using three different greenhouse gas emissions scenarios (Representative Concentration Pathways, RCP). Our reconstructions yielded an environmental ELA across the European Alps of 2980 m above sea level for the period 1901−1930, with a rise of 114 m in the period 1971−2000. The environmental ELA is projected to exceed the maximum elevation of 69%, 81% and 92% of the glaciers in the European Alps by 2071−2100 under mitigation (RCP2.6), stabilization (RCP4.5) and high greenhouse gas emission (RCP8.5) scenarios, respectively

    Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps

    No full text
    Rock glaciers and protalus ramparts are characteristic landforms of the periglacial domain often used as markers for the occurrence of permafrost in mountain terrains. As such, relict rock glaciers can be used for paleoclimate reconstructions. We present here the first previously unreported rock glacier inventory of the south-eastern Alps (including the north-eastern-most region of Italy and Slovenia), interpreted from high resolution orthophotos and a high resolution digital terrain model interpolated from airborne laser scanning (LiDAR). We mapped 53 rock glaciers covering a total area of 3.45 km2. The majority of rock glaciers are classified as relict and distributed between 1708 and 1846 m a.s.l. with slope ranging between 19° and 27°. In addition to rock glaciers we observed 66 protalus (pronival) ramparts, having median elevation of 1913 m a.s.l. and covering 0.48 km2. More than half of the inventoried protalus ramparts are located in the more maritime area of the Alps with higher precipitation compared to the location of rock glaciers. Using paleoclimate reconstruction based on the 1981–2010 climatological record of the area, we infer that the rock glaciers formed during one of the dry and cold periods of the late Pleistocene and early Holocene. Possible evolution of the active pronival forms observed in the most maritime area of this alpine sector is also discussed

    An early glacial maximum during the last glacial cycle on the northern Velebit Mt. (Croatia)

    No full text
    Comprehensive glacial Quaternary studies involving geochronological methods, modelling of ice topography with the support of field geomorphological and geological data in the Balkan Peninsula are relatively scarce, although there is evidence of past glaciations in severalmountain ranges. Here, we present research on the extent and timing of past glaciations on the northern Velebit Mt. in coastal Croatia and inferences of the climate during that time. Based on geomorphological and sedimentological evidence and using cosmogenic 36Cl surface exposure dating of moraine boulders, we provide an empirical reconstruction of past glaciers and compare this with the Parallel Ice Sheet Model (PISM) simulations under different palaeoclimate forcings. The dating results show that the northern Velebit glaciers reached their maximum extent during the last glacial cycle before the global Last Glacial Maximum (LGM). Maximum ice extent likely correlates with Marine Isotope Stage 5–4, although the exact timing cannot be determined at this point due to poorly known site- and time-specific denudation rates. Empirical reconstruction of the maximum extent suggests that the area covered by glaciers was ~116 km2. The-best fit PISM simulation indicates that the most likely palaeoclimate scenario for the glaciers of this size to form is a cooling of ~8 °C and a 10% reduction in precipitation from present-day levels. However, the best-fit simulation does not correctly model all mapped ice margins when changes in climatological parameters are applied uniformly across the model domain, potentially reflecting a different palaeoprecipitation pattern to today

    An early glacial maximum during the last glacial cycle on the northern Velebit Mt. (Croatia)

    Get PDF
    Comprehensive glacial Quaternary studies involving geochronological methods, modelling of ice topography with the support of field geomorphological and geological data in the Balkan Peninsula are relatively scarce, although there is evidence of past glaciations in several mountain ranges. Here, we present research on the extent and timing of past glaciations on the northern Velebit Mt. in coastal Croatia and inferences of the climate during that time. Based on geomorphological and sedimentological evidence and using cosmogenic 36Cl surface exposure dating of moraine boulders, we provide an empirical reconstruction of past glaciers and compare this with the Parallel Ice Sheet Model (PISM) simulations under different palaeoclimate forcings. The dating results show that the northern Velebit glaciers reached their maximum extent during the last glacial cycle before the global Last Glacial Maximum (LGM). Maximum ice extent likely correlates with Marine Isotope Stage 5–4, although the exact timing cannot be determined at this point due to poorly known site- and time-specific denudation rates. Empirical reconstruction of the maximum extent suggests that the area covered by glaciers was ~116 km2. The-best fit PISM simulation indicates that the most likely palaeoclimate scenario for the glaciers of this size to form is a cooling of ~8 °C and a 10% reduction in precipitation from present-day levels. However, the best-fit simulation does not correctly model all mapped ice margins when changes in climatological parameters are applied uniformly across the model domain, potentially reflecting a different palaeoprecipitation pattern to today

    Permafrost conditions in the Mediterranean region since the Last Glaciation

    No full text
    The relatively warm climate conditions prevailing today in the Mediterranean region limit cold geomorphological processes only to the highest mountain environments. However, climate variability during the Late Pleistocene and Holocene has led to significant spatio-temporal variations of the glacial and periglacial domain in these mountains, including permafrost conditions. Here, we examine the distribution and evolution of permafrost in the Mediterranean region considering five time periods: Last Glaciation, deglaciation, Holocene, Little Ice Age (LIA) and present-day. The distribution of inactive permafrost-derived features as well as sedimentary records indicates that the elevation limit of permafrost during the Last Glaciation was between 1000 m and even 2000 m lower than present. Permafrost was also widespread in non-glaciated slopes above the snowline forming rock glaciers and block streams, as well as meter-sized stone circles in relatively flat summit areas. As in most of the Northern Hemisphere, the onset of deglaciation in the Mediterranean region started around 19-20 ka. The ice-free terrain left by retreating glaciers was subject to paraglacial activity and intense periglacial processes under permafrost conditions. Many rock glaciers, protalus lobes and block streams formed in these recently deglaciated environments, though most of them became gradually inactive as temperatures kept rising, especially those at lower altitudes. Following the Younger Dryas glacial advance, the Early Holocene saw the last massive deglaciation in Mediterranean mountains accompanied by a progressive shift of permafrost conditions to higher elevations. It is unlikely that air temperatures recorded in Mediterranean mountains during the Holocene favoured the existence of widespread permafrost regimes, with the only exception of the highest massifs exceeding 2500-3000 m. LIA colder climate promoted a minor glacial advance and the spatial expansion of permafrost, with the development of new protalus lobes and rock glaciers in t
    corecore