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14 Abstract

15 This article presents the first attempt to date moraines in the Dinaric mountain karst using 

16 cosmogenic 36Cl surface exposure dating technique. Twenty samples were collected from moraine 

17 boulders from two sets of the lowest and largest lateral moraines on the Velež (1965 m asl) and 

18 Crvanj mountains (1920 m asl) in Bosnia and Herzegovina. The dated lateral-terminal moraine 

19 complexes, spanning elevations from ~980 to 1350 m asl, are up to 2.7 km long and rise more than 

20 100 m above the valley floor. The moraine boulders yielded 36Cl ages spanning from Oldest Dryas for 

21 Velež (14.9 ± 1.1 ka) to Younger Dryas for Crvanj (11.9 ± 0.9 ka), considering the average age of the 

22 two oldest samples from each lateral moraine as the most representative time of moraine 

23 emplacement. The dated moraines mark the largest extent of glaciers in both study areas, which 

24 have been reconstructed to ~ 28 km2 for Velež and ~24 km2 for Crvanj, having a mean equilibrium 

25 line altitude at 1388 m and 1541 m, respectively. Under modern precipitation values, which account 

26 for ~2000 mm, the temperature depression between 8 and 10 °C is required to sustain the 

27 palaeoglaciers with reconstructed equilibrium line altitudes. Glaciers of similar size with such low 

28 equilibrium line altitudes during the Lateglacial have not been reported until now for the Balkan 

29 Peninsula. It is very likely that the boulder ages reflect complex exhumation and denudation 

30 histories, which at this point do not allow obtaining more precise moraine chronologies for the study 

31 areas. Nevertheless, this article delivers new data on the extent and timing of Quaternary glaciations 

32 in the Mediterranean mountains, where records of glacier fluctuations seem to be asynchronous 

33 amongst different areas. It is clear that dating moraines with cosmogenic 36Cl surface exposure 

34 dating in carbonate lithologies in areas of high precipitation like the Dinaric karst, remains 

35 challenging.

36

37 Keywords: Quaternary; Glaciation; Dinaric Karst; Cosmogenic Surface Exposure Dating; Equilibrium 

38 Line Altitude; Palaeoclimate
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39 1. Introduction

40 The Dinaric Mountains is more than 650 km long mountain chain flanking the eastern Adriatic coast. 

41 It is characterised by a karst landscape with high-elevated plateaux, reaching the highest elevations 

42 in the central-southern belt (Čvrsnica – 2228 m asl (above sea level), Maglič - 2386 m asl, Durmitor – 

43 2522 m asl, Prokletije - 2694 m asl). The highest parts of the Dinaric Mountains were glaciated during 

44 Pleistocene (Cvijić, 1899) and even today few small glacial remnants still exist in the Durmitor and 

45 Prokletije mountains (Gachev et al., 2016). Hence, this area is characterised by a combination of karst 

46 and glacial landscape (Telbisz et al., 2019; Žebre and Stepišnik, 2015). 

47 Pioneer studies on past glaciations in the Dinaric Mountains were conducted at the end of the 19th 

48 century, focusing on the area of Montenegro and Bosnia and Herzegovina (e.g. Cvijić, 1899; Grund, 

49 1902; Penck, 1900). Extensive monographs and scientific papers from that time hold detailed 

50 descriptions of glacial landforms and even reasonably precise geomorphological maps. In the 20th 

51 century the research on palaeoglaciations continued also in other Dinaric areas (e.g. Habič, 1968; 

52 Liedtke, 1962; Riđanović, 1966; Šifrer, 1959) with several interruptions owing to wars and political 

53 instabilities. These turbulent past events have left a great impact also on the recent state of 

54 knowledge on past glaciations in the Dinaric Mountains since majority of areas still remain undated 

55 (e.g. Krklec et al., 2015; Milivojević, 2007; Milivojević et al., 2008; Petrović, 2014) and without any 

56 detailed sedimentological and stratigraphic research. Nevertheless, it is not only the landmine 

57 contamination that prevents more detailed studies, but also dating glacial deposits in carbonate 

58 areas, with high precipitation gradients and hence important denudation rates (Levenson et al., 2017 

59 and references therein), is still very challenging. 

60 A number of techniques can be applied to date moraines and outwash deposits in carbonate 

61 environments, including U-series, luminescence, radiocarbon (14C) and TCN (terrestrial cosmogenic 

62 nuclide) dating. U-series dating can be used to date secondary carbonates that are found cementing 

63 moraines and the practical range of this technique is ~350 ka (Hughes et al., 2013). The method relies 
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64 on several assumptions and criteria, where special care should be taken to ensure that samples are 

65 from distinct crystal horizons and show no evidence of re-crystallisation and open-system behaviour 

66 (Smart, 1991). Although the U-series method can provide only the age of the cement growth, 

67 therefore lacking the precision needed to constrain the timing of moraine deposition, it was found to 

68 be useful for bracketing moraines within certain glacial cycles in some of the Mediterranean 

69 mountains (Hughes et al., 2011, 2010, 2006). Luminescence dating is often used to date outwash 

70 sands and the upper age limit may extend up to 500 ka (Wallinga and Cunningham, 2015), but the 

71 method is hardly applicable to carbonate environments owing to the lack of quartz and feldspars in 

72 deposits (Krklec et al., 2015). Nevertheless, the method was successfully applied to some of the 

73 carbonate-dominated landscapes in the Mediterranean, where smaller amounts of quartz were 

74 present in outwash due to the limited exposures of non-carbonate bedrock in the glaciated 

75 catchments (Bavec et al., 2004; Lewin et al., 1991). Although radiocarbon dating has a limited 

76 chronological range (<50 ka) (Hughes et al., 2013), it has been shown to be a very robust method for 

77 dating Last Glacial Maximum (LGM) moraines (e.g. Monegato et al., 2007) or other Late Pleistocene 

78 glacial sequences even in limestone-dominated environments (e.g. Nieuwendam et al., 2016; Ruiz-

79 Fernández et al., 2016). However, in karstic terrains, this technique is commonly restricted either by 

80 material availability in moraine matrix or by the hard-water error when applying the technique in 

81 moraine-dammed lakes or bogs. Cosmogenic surface exposure dating with 36Cl is an established 

82 method for dating moraines (Dunai, 2010; Gosse and Phillips, 2001) and has been successfully 

83 applied in carbonate environments elsewhere (e.g. Gromig et al., 2018; Pope et al., 2015; Sarıkaya et 

84 al., 2014; Styllas et al., 2018). However, karst denudation rates limit the 36Cl exposure dating 

85 technique to be applied on carbonate lithologies that are exposed to extremely wet environmental 

86 conditions, if they are older than ~40 ka (Hughes and Woodward, 2017).

87 Despite several methodological and physical obstacles such as landmines, it is important to obtain as 

88 much data as possible on the glacial extent and chronology from the Dinaric Mountains and wider 

89 Balkan area in order to better understand the temporally (a)synchronous maximum phase of 
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90 glaciation in the Mediterranean (Hughes and Woodward, 2017) and the past and present changes in 

91 atmospheric circulation influencing the Mediterranean region. The coastal Dinaric Mountains receive 

92 one of the highest precipitation amount in Europe today (Crkvice weather station - MAP (mean 

93 annual precipitation) ~ 5000 mm) and this seemed to be true also for the cold stage climates since 

94 according to the present state of knowledge one of the lowest equilibrium line altitudes (ELAs) in the 

95 Mediterranean were located in this area, showing a strong west-east gradient associated with 

96 westerlies (Hughes and Woodward, 2017). The Balkan area is also considered one of key areas for 

97 assessing the environmental and population history of Europe since it has been argued that this 

98 region served as a Lateglacial refugium for humans, animals and plants (Pilaar Birch and Vander 

99 Linden, 2018).

100 Although geomorphological evidence for palaeoglaciations in some of the Bosnia and Herzegovina 

101 Mountains has already been recognized in the 19th century (Cvijić, 1899), Bosnia and Herzegovina is 

102 considered as one of the main black spots in the Dinaric Mountains from the glacial chronological 

103 point of view, as there are no quantitative age data and detailed sedimentary analyses until today. In 

104 this paper we focus on the glacial chronology of the Velež and Crvanj mountains. Velež Mountain was 

105 recognized as glaciated for the first time by Grund (1902, 1910) in the early 20th century. In this very 

106 exact and advanced study for his time, considering the available topographic maps and other field 

107 instruments, Grund presented the geomorphological map of the northern side of Velež, including a 

108 detailed description of glacial features. He also estimated the snow line for the north-facing 

109 palaeoglaciers to be between 1350-1500 m asl. This area has been long time forgotten until 2015, 

110 when the glaciokarst phenomena were studied by Žebre and Stepišnik (2015). On the contrary, the 

111 Crvanj Mountain has never been studied before from a palaeoglaciological point of view. Therefore, 

112 the aims of our research are (a) to present the geomorphological and sedimentological evidence for 

113 glaciation on the Velež and Crvanj mountains, (b) to constrain the timing of the largest recognized 

114 glacier extent on Velež and Crvanj by applying the cosmogenic 36Cl surface exposure dating technique 

115 for the first time in the Dinaric Mountains, (c) to reconstruct palaeoglacier dimensions and related 
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116 palaeo-ELAs, and (d) to critically evaluate a relevance of the obtained cosmogenic ages in the light of 

117 regional geomorphological and climate context.

118

119 2. Regional setting, geology and climate

120 The Velež and Crvanj mountains (43° 15'–43° 30' N and 17° 55'–18° 20' E) are located in the central 

121 Dinaric Mountains in southern Bosnia and Herzegovina between the Mostar basin to the west and 

122 Nevesinjsko polje to the south (Figure 1). The central mountain crest of Velež reaching elevations 

123 above 1700 m asl is approximately 12 km long and oriented in a NW-SE direction. The highest peak is 

124 Botin with 1965 m asl. On the other hand, the Crvanj Mountain has a plateau shape top with the 

125 highest elevations in its western part, where the peak of Zimomor reaches 1920 m asl. 

126 The Velež Mountain is an overthrust of the Cretaceous shallow water carbonates over the Tertiary 

127 and Cretaceous sedimentary rocks (Hrvatović, 2005). The north-facing slopes, where majority of the 

128 research took place, are predominantly composed of Cretaceous limestone and dolostone. The 

129 Crvanj Mountain exhibits very similar geological features. Central part of the mountain is an 

130 overthrust of Triassic and Jurassic dolostones, with beds of limestone containing chert, overlying 

131 Jurassic and Cretaceous limestone (OGK, 1981, OGK, 1970). Owing to the prevalence of carbonate 

132 lithology, a well-developed karst aquifer functions within both areas. Subsurface drainage is oriented 

133 towards springs at the Nevesinjsko polje and other deep-entrenched valleys around the mountain, 

134 thus the vadose zone reaches depths of at least few hundred metres. 

135 The study area is situated in a transition zone between the Mediterranean and continental climate, 

136 having characteristics of a warm temperate climate, fully humid, with cool summers (Cfc) according 

137 to the Köppen-Geiger climate classification (Kottek et al., 2006). Precipitation is well distributed 

138 throughout the year owing to the moisture coming from the Adriatic Sea (west) and the effect of 

139 orography. At Nevesinje (891 m asl), MAP over the period 1961-1990 was 1795 mm (Data courtesy 
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140 Federal Hydrometeorological Institute, Sarajevo), while MAP at higher elevations is likely to be 

141 higher; it was estimated to be up to 2000 mm (Vojnogeografski institut, 1969). The mean annual air 

142 temperature (MAAT) at Nevesinje is 8.6 °C with the warmest month being July (18 °C) and the coldest 

143 January (-0.9 °C).

144

145 Figure 1: (a) Study area and the topography of Mediterranean region after the mountain belts from 

146 Kapos et al. (2000) and (b) a close up of the southern Bosnia and Herzegovina. The study areas of the 

147 Velež and Crvanj mountains are located between Mostar basin to the west and Nevesinjsko polje to 

148 the south.

149

150 3. Methods

151 3.1 Geomorphological mapping

152 Field geomorphological mapping was carried out between 2012 and 2015. Topographic maps in a 

153 scale of 1:25.000 were used for mapping, while basic geological maps in a scale of 1:100.000 (OGK, 

154 1981, OGK, 1970) were useful for giving a general support on the geological setting of the study area. 

155 With the exception of the northwestern area of Velež and northern part of Crvanj that are situated 

156 close or in the minefields (http://www.bhmac.org), the rest of the study area was examined in detail 

157 although the north-facing slopes of Velež below 1400 m asl are densely forested and therefore not 

158 easy to map. The interpretation of the spatially documented landforms on the field was supported by 

159 the sedimentological description of some outcrops, commonly exposed as road cuts or abandoned 

160 gravel pits. Standard field procedures (e.g. sedimentary structures, colour, clast size, distribution and 

161 roundness) and lithofacies codes following Evans and Benn (2004) were used for sediment 

162 description.

163 3.2 Cosmogenic nuclide dating
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164 Cosmogenic 36Cl surface exposure dating was used to infer the depositional ages of the moraines in 

165 the Velež and Crvanj mountains. The length of time that the boulder has been exposed on the 

166 moraine surfaces can be estimated by this method (Davis and Schaeffer, 1955; Dunai, 2010) via 

167 cosmogenically produced isotopes such as 36Cl, 10Be and 26Al. Here, we used the 36Cl because all 

168 lithologies, especially the carbonates, are suitable for the production mechanism of 36Cl. 

169 Dating with 36Cl depends on the interactions between cosmic rays and nuclides in rocks. When rocks 

170 are exposed at or near surface, cosmic ray particles, which are secondary fast neutrons, thermal 

171 neutrons and negative slow muons start to bombard and interact with three main nuclides (40Ca, 39K 

172 and 35Cl) to cause formation of cosmogenic 36Cl. Therefore, measured 36Cl concentrations in rocks can 

173 be used to quantify the time-length of boulder exposition (Gosse and Phillips, 2001; Owen et al., 

174 2001). 

175 3.2.1 Sample collection and chemical preparation

176 We collected 20 samples for cosmogenic 36Cl dating from the top of the boulders on the crest of the 

177 moraines. The boulders were selected according to their positions on the crest, stability, size and 

178 preservation indicators; such imbedded large enough boulders on moraine crests were preferred. 

179 We concentrated on the largest moraines that were reasonably away from the minefields; hence 

180 safe enough to accomplish the fieldwork. We sampled on both right and left lateral moraines, 

181 targeting same number of samples from each lateral moraine. Only the largest glacial boulders with a 

182 stable position on the moraine crests have been taken into account. A hammer and chisel were used 

183 to take samples from upper few centimetres of the boulders and thicknesses of the samples were 

184 recorded (Table 1). Shielding of surrounding topography was measured by inclinometer from the 

185 horizon at each sample location (Gosse and Phillips, 2001). Sample locations were recorded by a 

186 hand-held GPS. Elevations data are also based on the GPS measurements except for BU samples, 

187 which are from topographic maps.



9

188 The rock samples were prepared at Istanbul Technical University (ITU) Kozmo-Lab 

189 (http://www.kozmo-lab.itu.edu.tr/en) according to procedures described in Sarıkaya (2009). First, 

190 samples were crushed and sieved to appropriate grain size (0.25-1 mm). Then they were leached 

191 with deionized water and 10% HNO3 to remove secondary carbonates, dust and organic particles. 

192 Spiked (35Cl enriched) samples were digested with excess amount of 2 M HNO3 in 500 ml HDPE 

193 bottles (Sarıkaya et al., 2014; Schlagenhauf et al., 2010). ~10 ml of 0.1 M AgNO3 solution was added 

194 before the digestion to precipitate AgCl. Later, isobar 36S was removed from the solution by repeated 

195 precipitation of BaSO4 with addition of Ba(NO3) and re-acidifying with concentrated HNO3. Final 

196 precipitates of AgCl were sent to the ANSTO, Accelerated Mass Spectrometer (AMS) in Sydney, 

197 Australia for isotope ratio measurements given in Supplementary Table S1.

198 Major element concentrations were determined with inductively coupled plasma emission 

199 spectrometry (ICP-ES) and trace element concentrations with inductively coupled plasma mass 

200 spectrometry (ICP-MS) at the Acme Lab (ActLabs Inc., Ontario Canada) to provide the total element 

201 concentrations (Table 2). Total Cl was calculated by isotope dilution method (Desilets et al., 2006; 

202 Ivy-Ochs et al., 2004) after AMS analysis (Table 2).

203 3.2.2 Determination of 36Cl ages

204 The CRONUS Web Calculator version 2.0 (http://www.cronuscalculators.nmt.edu) (Marrero et al., 

205 2016a) was used to calculate sample ages. Cosmogenic 36Cl production rates of Marrero et al. 

206 (2016b) [56.3 ± 4.6 atoms 36Cl (g Ca)-1 a-1 for Ca spallation, 153 ± 12 atoms 36Cl (g K)-1 a-1 for K 

207 spallation and 743 ± 179 fast neutrons (g air)-1 a-1] were used using the time-dependent Lifton-Sato-

208 Dunai scaling (also called “LSD” or “SF” scaling) (Lifton et al., 2014). We used 190 µ g-1 a-1 for slow 

209 negative muon stopping rate at land surface at sea-level high-latitude (Heisinger et al., 2002). Lower 

210 Ca spallation production rates suggested by Stone et al. (1996) or Schimmelpfennig et al. (2011) will 

211 make our ages 7-10% older. Spallation and negative muon capture reactions are responsible for the 

212 main production of 36Cl (>95% for Mt. Velež samples and ~60% for Mt. Crvanj samples), with lesser 
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213 contributions from thermal neutron capture reactions by 35Cl (5% for Mt. Velež samples and 40% for 

214 Mt. Crvanj samples). The chemical data (Table 2) and all other essential information including the 36Cl 

215 concentrations and scaling factors to reproduce resultant ages is given in Table 3 and Supplementary 

216 Table S1.

217 All surface exposure ages include corrections for thickness and topographic shielding. We reported 

218 both zero-erosion and erosion corrected boulder ages (from 10 to 60 mm ka-1 of bedrock weathering 

219 assumed) and preferred to use the 40 mm ka-1 erosion corrected age, because the study area is 

220 located in one of the highest precipitation regions of Europe, and boulder surfaces show up to 

221 several cm deep solution grooves. Snow correction factor for spallation reactions of 0.9539 was 

222 applied to all samples based on snowpack of 25, 100, 100, 100, 50, 25 cm of snow on Nov, Dec, Jan, 

223 Feb, Mar and Apr on top of boulders. Snow thicknesses were estimated based on meteorological 

224 data from the Nevesinje weather station (Data courtesy Federal Hydrometeorological Institute, 

225 Sarajevo). 

226

227 Table 1: Sample locations, attributes and local corrections to production rates.

228

229 Table 2: Geochemical and isotopic analytical data.

230

231 3.3 Glacier and climate reconstruction

232 3.3.1 Glacier geometry

233 A digitized geomorphological map of glacial features together with 20 m digital elevation model was 

234 used in the glacier geometry reconstruction. The glacier’s extent was established using the field 

235 geomorphological evidence such as trimlines and lateral-frontal moraines. Then, the reconstruction 

236 was carried out by producing theoretical glacier surface profiles using the Profiler v.2 spreadsheet 

237 developed by Benn and Hulton (2010). We have largely followed the procedure presented in Žebre 
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238 and Stepišnik (2014), which is based on similar principles as the newly developed semi-automated 

239 GlaRe GIS tool (Pellitero et al., 2016). Software ArcGIS 10.3.1 and a predefined Topo to Raster 

240 interpolation method was used for calculating the ice surface with 50 m contour intervals.

241 3.3.2 Equilibrium Line Altitudes (ELA)

242 The equilibrium line altitude (ELA) of the reconstructed palaeoglaciers was determined by applying 

243 the area altitude balance-ratio method (AABR) (Osmaston, 2005). The accumulation-area ratio (AAR) 

244 method, which is the most widely used approach for the palaeo-ELA reconstruction, is becoming 

245 increasingly replaced by the AABR method, which is also more reliable, provided that the correct 

246 balance ratio is applied (Rea, 2009). The principle of the AABR method is that the total annual 

247 accumulation above the ELA exactly balances the total annual ablation below the ELA under 

248 equilibrium conditions (Benn and Gemmell, 1997). The advantage of this method is that explicitly 

249 accounts for both glacier hypsometry and mass balance gradients (Benn and Gemmell, 1997). The 

250 method gives the best results for the clean glaciers (Benn and Lehmkuhl, 2000) where most of them 

251 will have the balance ratio between 1.5 and 3.5 (Osmaston, 2005). A representative balance ratio for 

252 maritime mid-latitude glaciers is 1.9 ± 0.81 (Rea, 2009), which we applied for calculating the ELA of 

253 palaeoglaciers on the Velež and Crvanj mountains. A GIS tool developed by Pellitero et al. (2015) was 

254 used to facilitate the ELA calculations of individual valley, cirque and outlet glaciers. The latter were 

255 separated by subdividing the ice field into sectors of individual glacier entities (Cowton et al., 2009; 

256 Hughes et al., 2010). The local ELA of an individual mountain is represented as a mean ELA of the 

257 entire group of glaciers. The ELA of each glacier was also estimated with the AAR method using a 

258 ratio of 0.6, which is believed to be representative of valley and cirque glaciers (Benn and Evans, 

259 1998; Nesje and Dahl, 2000; Porter, 1977). This allowed crosschecking the ELA results calculated with 

260 the AABR method.

261 3.3.3 Temperature-melt simulations
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262 For a better understanding of the relationship between glaciers and climate as well as an additional 

263 consideration of the age-dating results, we used a simple degree-day model (Brugger, 2006; Hughes, 

264 2008), which calculates the amount of accumulation required to sustain glaciers. The inputs required 

265 for the model are mean annual temperature range and mean annual temperature. The latter is 

266 distributed over a sine curve to produce daily temperature means using the following equation 

267 (Brugger, 2006):

268 𝑇𝑑 =  𝐴𝑦𝑠𝑖𝑛(2𝑑/ ‒  ) +  𝑇𝑎
269 where  is the mean daily air temperature,  is the amplitude of the yearly temperature (½ of the 𝑇𝑑 𝐴𝑦
270 annual temperature range),  the day of the year (1365),  is the period (365 days),  is the phase 𝑑  

271 angle (taken as 1.93 radians to reflect the fact that January is the coolest month) and  is the mean 𝑇𝑎
272 annual air temperature.

273 The annual accumulation required at the ELA to balance melting is equal to the sum of daily 

274 snowmelt, using a degree-day factor (Hughes et al., 2010). In our study we used the mean degree-

275 day factor for snow of 4.1 mm day-1°K-1, which is representative of most glaciers and also in 

276 accordance with values reported in the literature (e.g. Braithwaite, 2008; Braithwaite et al., 2006). 

277 Snowmelt at the palaeo-ELAs on the Velež and Crvanj mountains was then reconstructed under 

278 different temperature regimes, using the climate data from Nevesinje (891 m asl) for the period 

279 1961-1990. Mean annual temperature at this station was depressed by 4-15 °C in 1 °C intervals and 

280 then extrapolated to the mean palaeo-ELAs on Velež and Crvanj using the modern environmental 

281 lapse rate of 0.65 °C/100 m. The model was run using two different mean annual temperature 

282 ranges: the modern one (18.9 °C) and 150% of the modern range (28.35 °C). The latter reflects the 

283 possibility that palaeoclimate might have been more continental, since the sea level in the Adriatic 

284 basin was approximately 115 m lower at 20 ka, 100 m lower at 16 ka, and 60 m lower at 12 ka 

285 (Lambeck et al., 2011). Nevertheless, the above-described procedure allowed obtaining a range of 
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286 temperature-accumulation predictions and better understanding of the palaeoclimate needed to 

287 sustain glaciers in the study areas.

288

289 4. Results

290 4.1 Glacial geomorphology

291 4.1.1 Velež Mountain

292 The palaeoglacial landscape of the Velež Mountain (Figure 2a), with an emphasis on the glaciokarst 

293 features, was previously mapped by Žebre and Stepišnik (2015). The south-facing slopes exhibit 

294 minor glacier remodelling of the surface with only three cirques present below the highest peak 

295 Botin (1965 m asl). The cirque`s floors are situated between 1620 and 1790 m asl. A thin cover of 

296 glacial deposits is present on the cirque rims, while no glacial traces can be observed in lower 

297 elevations. On the contrary, the north-facing slopes are steep cliffs characterized by a series of 

298 cirques (Figures 3a and 3b) and extensive glacial deposition down to 950 m asl. Cirque floors on the 

299 northern side of Velež are situated much lower in elevation (between 1400 and 1500 m asl) from 

300 those on the south. Below cirques are polished limestone pavements and arêtes in between 

301 individual glacial valleys. Less than 5 km from the main mountain crest lateral-terminal moraine 

302 complexes occur at an elevation between 1300 and 1200 m. 

303 We mapped 5 large lateral moraine pairs that are up to 2.7 km long and rise more than 100 m above 

304 the valley floor. Other two smaller moraine complexes are 1.1 km long and no more than 50 m high 

305 (Figure 2a). Moraines extend down to a minimum altitude of 940 m asl, where they are coupled with 

306 outwash fans. Breach-lobe moraines, formed by the glacier cutting through the main lateral 

307 moraines, are present on the external parts of some lateral-terminal moraine complexes, which are 

308 believed to be deposited by moraine-dammed glaciers, typical for the karst areas (Žebre and 

309 Stepišnik, 2015). Moraines occur also approximately 1 km up-valley of the outermost limits of 

310 glaciation and some 100 m higher. They are much smaller, indicating an evident shrinkage of glaciers 
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311 especially in ice thickness. In most valleys of the Velež Mountain, left- and right-lateral moraine 

312 couples are common (Figure 2a). We did not recognize more than two clear sets of lateral moraines. 

313 The third set is usually present only on the rim of some cirques. 

314 Lateral moraines are composed of a diamicton (Dmm) characterized by a sandy-silty matrix and 

315 subangular to subrounded cobble-to boulder sized clasts of Cretaceous limestone and dolostone. 

316 Common boulders of ~1 m in diameter are scattered along the moraine crests, although those up to 

317 3 m can be also found (i.e. sample BU16-06). Further down moraines two larger areas of outwash 

318 deposition are present below 1000 m asl. The meltwaters from the glacial valleys west of the peak 

319 Botin were directed towards the Donje Zijemlje karst depression (Figure 3c), while those from the 

320 valleys east of the highest peak were running off towards Nevesinjsko polje. However, a bifurcation 

321 of meltwaters below glaciers in the karst underground system is not excluded. Outwash fans are 

322 slightly inclined, from 1.5° in the proximal zones to only 0.5° in the distal zones. They consist of 

323 horizontally bedded, clast-supported gravels with rare sandy lenses (Gh). The clasts are subrounded 

324 to rounded Cretaceous limestone and dolostone. Average size of the clasts is from 1 to 7 cm, 

325 attaining a maximum of 17 cm.

326

327 Figure 2: (a) Geomorphological map of glacial landforms on the Velež Mountain. (b) Samples for 36Cl 

328 cosmogenic nuclide dating were collected from the Budijevača lateral-terminal moraine complex. 

329 The samples ID`s along with the ages (ka) corrected for 40 mm ka-1 of erosion are presented in (b).

330

331 Figure 3: (a) Steep north-facing slopes of the Velež Mountain showing a series of cirques in the upper 

332 parts and moraines entirely covered by forest below them. (b) The easternmost cirque on the Velež 

333 Mountain, which hosted a small valley glacier during the maximum glacial phase. (c) The 

334 westernmost outwash fan filling the floor of Donje Zijemlje karst depression.

335
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336 4.1.2 Crvanj Mountain

337 The western slopes of the Crvanj Mountain (Figure 4a) were remodelled by limited extent of a cirque-

338 type glaciation. A complex of three cirques (Figure 5a) with northwestern exposition are present below 

339 the highest peak Zimomor (1920 m asl). The cirque floors are situated at an elevation span of 1430-

340 1480 m asl. Up to 10 m high moraine ridges are located inside and below the cirques between 1400 

341 and 1500 m asl. Three km long, deeply entrenched gully starts below glacial deposits and terminates 

342 in the apex of the large outwash fan, covering the northern part of Nevesinjsko Polje. 

343 Central part of the mountain is a wide-ranging plateau, having surface slightly sloping eastwards. Major 

344 part of the plateau area is made of dolostone that appears to be glacially moulded, showing rounded 

345 hills slightly elongated in the direction of glacier flow, and few dolines and polished pavements. Only 

346 limited patches of glacial till can be found on the plateau, whereas on the eastern and southern slopes 

347 of Crvanj glacial till appears in the form of large lateral moraines. The northern sector of the mountain, 

348 where glacial deposits are also to be expected, has not been examined on the field due to the presence 

349 of minefields. Since the area is completely overgrown by a forest, it was neither possible to confirm 

350 the presence of moraines by means of remote sensing data. 

351 A pair of lateral moraines and minor recessional moraines on the south-facing slopes extend between 

352 1180 and 1400 m asl. In between the main lateral moraines, a gully is carved in bedrock, and after 

353 approximately 3 km of length it terminates in the outwash fan on Nevesinjsko Polje. The largest 

354 moraines that were also sampled (Figure 4b), are present on the eastern slopes of Crvanj at an 

355 elevation range of ~1000-1350 m asl. Lateral moraines are no more than 1.5 km long and rise up to 

356 150 m above the terminal moraine depression, where a lake is present (Figure 5b). 

357 Till building these lateral moraines appears as a diamicton (Dmm) with sandy-silty matrix and angular 

358 to subrounded clasts (Figure 5c). The lithology is more diverse as in the case of the Velež moraines. 

359 Limestone and dolostone clasts show greater roundness compared to sandstone clasts (Figure 5d), 

360 which are often striated. Gravel- to boulder sized clasts prevail within examined outcrops, while scarce 
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361 boulders, not exceeding 1.5 m in height, can be observed on the crests of moraines. Outwash deposits 

362 in the Crvanj area have not been examined in detail due to a lack of outcrops.

363

364 Figure 4: (a) Geomorphological map of glacial landforms on the Crvanj Mountain. (b) Samples for 36Cl 

365 cosmogenic nuclide dating were collected from the Jezero left and right lateral moraines. The 

366 samples ID`s along with the ages (ka) corrected for 40 mm ka-1 of erosion are presented in (b).

367

368 Figure 5: (a) Northern cirque below the highest peak of the Crvanj Mountain. (b) The sampled left 

369 and right lateral moraine with a lake in between and (c) glacial till exposed in a road cut (d) with 

370 striated sandstone clasts. 

371

372 4.2 36Cl exposure ages 

373 We collected a total of 20 glacial boulder samples from Velež and Crvanj mountains for 36Cl 

374 cosmogenic nuclide dating purposes (Table 1). The sampled moraines belong to a group of the lowest 

375 moraines in both study areas and therefore mark the largest extent of palaeoglaciers that can be 

376 recognised on the basis of geomorphological evidence.

377 Denudation rates of carbonate rocks can be very high and are believed to increase with increasing 

378 MAP (Levenson et al., 2017; Ryb et al., 2014). The data from several carbonate terrains around the 

379 world show denudation rates of the order of 40 (± 20) mm ka-1 for areas with mean annual 

380 precipitation similar to that of Nevesinje (Levenson et al., 2017), while similar denudation rates (30-

381 60 mm ka-1) were recently measured also in the Mediterranean karst (SE France) (Thomas et al., 

382 2018) independently of the precipitation amount. Thus, 40 mm ka-1 was used as the most 

383 representative erosion rate for the correction of all sample ages in this study. 
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384 Reported age uncertainties were given at the 1-sigma level (i.e., one standard deviation), which 

385 include both the analytical and production rate errors. The cosmogenic ages of boulders, and thus 

386 the age of moraines represent the beginning of glacier retreat i.e., change in the equilibrium 

387 conditions of the glacier mass, or stationing of the glacier on a terminal point.

388 4.2.1 Velež Mountain glacial chronology 

389 Ten samples (Figure 6) were collected from the crest of one of the largest and best developed lateral-

390 terminal moraine complexes on the Velež Mountain, located in the Budijevača Valley (Figures 2b, 7a 

391 and 7b). The sampled lateral-terminal moraine complex on Velež appears at 1300 m asl and after 2.7 

392 km terminates at 980 m asl. It rises up to 130 m above the lake, which is located in between the 

393 moraine complex. The lithology of all boulders that were collected from this moraine complex is 

394 limestone, showing high concentrations of CaO (~55%) and very low K2O and Cl (12.9-37.5 ppm), thus 

395 the main production mechanism (>95%) is spallation of Ca (Table 2, and supplementary Table S1). 

396 Five boulders from the right lateral moraine of Budijevača Valley yielded 36Cl ages of 14.1 ± 1.8 ka 

397 (BU16-01), 7.8 ± 0.9 ka (BU16-02), 10.9 ± 1.4 ka (BU16-03), 8.8 ± 1.1 ka (BU16-04) and 9.0 ± 1.0 ka 

398 (BU16-05). Boulders from the left lateral moraine gave ages of 15.7 ± 2.1 ka (BU16-06), 9.0 ± 1.0 ka 

399 (BU16-07), 6.3 ± 0.6 ka (BU16-08), 10.7 ± 1.3 ka (BU16-09) and 11.5 ± 1.4 ka (BU16-10) (Table 3).

400

401 Figure 6: Photos of the sampled boulders and their cosmogenic ages based on 40 mm ka-1 bedrock 

402 erosion rates on the Velež Mountain.

403

404 None of the measured ages is more than twice the standard deviation away from the mean of the 

405 surface exposure ages in a data set (Figure 8); therefore, no statistical outliers can be identified. 

406 However, the biggest and tallest two boulders (BU16-01, BU16-06) gave the oldest ages (14.1 ± 1.8 

407 ka and 15.7 ± 2.1 ka, respectively) among the group of samples taken from this moraine complex, 
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408 which indicates the exhumation caused by erosion of the moraines is likely to have a great influence 

409 on the age of samples. Assuming that inheritance is not a relevant process due to the position and 

410 characteristics of the moraine, then the oldest ages are likely to best estimate the true depositional 

411 age.

412 Therefore, the oldest two samples representing the best estimate of the age of the landform, give 

413 ages of 14.1 ± 1.8 ka (BU16-01) for the right lateral moraine and 15.7 ± 2.1 (BU16-06) for the left 

414 lateral moraine. These average ages of 14.9 ± 1.1 ka indicate the Oldest Dryas glaciation in the Velež 

415 Mountain.

416

417 Figure 7: (a) GoogleEarth image and (b) an aerial photo of the Budijevača lateral-terminal moraine 

418 complex. Sampling locations are marked with yellow points in (a), white dotted lines in (b) are 

419 moraine crests and blue arrowed line is the direction of the glacier flow. Note the height (130 m) of 

420 the moraine in (b).

421

422 Figure 8: Cosmogenic 36Cl ages of the boulders from right- (RL) and left-lateral (LL) moraines of (a) 

423 Mt. Velež and (b) Mt. Crvanj. Upper panels show the individual sample ages with 1-sigma 

424 uncertainties, and the lower panels show the probably density functions (PDF) of the samples. 

425 Average age of the oldest two samples (indicated by thick black PDF curves) from both data sets 

426 were shown and assigned to the age of the landforms. 

427

428 4.2.2 Crvanj Mountain glacial chronology

429 We also collected 10 samples (Figure 9) from a pair of lateral moraines on the western slopes of the 

430 Crvanj Mountain (Figure 4b). The sampled pair of lateral moraines stretches between 1350 and 1120 

431 m asl and stands approximately 150 m above the lake area. Boulders are of different carbonate 

432 lithologies with prevailing seven dolostone and three limestone boulders. Dolostone samples 
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433 (samples from CR16-01 to CR16-06 and sample CR16-08) have lower concentrations of CaO (26.51-

434 43.59%), but much higher concentrations of Cl (155.7-450.0 ppm) compared to limestone samples 

435 (samples CR16-07, 09 and 10) (Table 2), which make the low energy neutron capture reactions via 

436 35Cl an important part of the production mechanism of 36Cl (about 40% of total 36Cl production) 

437 (supplementary Table S1). 

438 Six boulders were collected from the left lateral moraine that yield ages of 8.2 ± 1.6 ka (CR16-01), 9.2 

439 ± 1.6 ka (CR16-02), 4.2 ± 1.0 ka (CR16-03), 8.4 ± 1.5 ka (CR16-04), 11.3 ± 2.5 ka (CR16-05) and 7.0 ± 

440 1.2 ka (CR16-06) (Table 3). The samples taken from the right lateral moraine yielded slightly younger 

441 ages, i.e. 7.0 ± 0.7 ka (CR16-07), 8.5 ± 1.4 ka (CR16-08), 8.3 ± 1.0 ka (CR16-09) and 12.4 ± 1.6 ka 

442 (CR16-10).

443 Even in this data set the statistical outliers do not appear (Figure 8) and the largest and at the same 

444 time the tallest boulder (CR16-05) gave the oldest age. We applied the same approach as for Velež 

445 and chose the oldest sample from each lateral moraine as the most representative time of moraine 

446 emplacement. The oldest two samples yielded ages of 11.3 ± 2.5 ka (CR16-05) for the left lateral 

447 moraine and 12.4 ± 1.6 ka (CR16-10) for the right lateral moraine. The average age of two samples 

448 (11.9 ± 0.8 ka) indicate the Younger Dryas stadial event in the Crvanj Mountain.

449

450 Table 3: Cosmogenic 36Cl inventories, production rates, ages of boulders considering different erosion 

451 rates and ages of glacial landforms using 40 mm ka-1 of erosion in the Velež and Crvanj mountains.

452

453 Figure 9: Photos of the sampled boulders and their cosmogenic ages on the Crvanj Mountain.

454

455 4.3 Palaeoglacier geometry 

456 On the basis of additional field observations, we revised the palaeoglacier extent and ELA estimation 

457 for the Velež Mountain, which have been previously presented by Žebre and Stepišnik (2015a). 
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458 However, the reconstruction of glaciers and ELAs on the Crvanj Mountain is presented for the first 

459 time in this paper. 

460 Geomorphological evidence indicates that during the maximum phase of glaciation the Velež glaciers 

461 covered an area of approximately 28.2 km2 (Figure 10a). The north-facing glaciers, to some extent 

462 described already by Grund (1910, 1902), initiated in cirques, moved down the valleys and 

463 terminated in the karst depressions north of the mountain. Eight km-wide and up to 210-m-thick 

464 system of 7 interconnected valley glaciers, with a number of nunataks protruding above the ice 

465 (Figure 10b and 10c), was situated below the cirque complex. Only two valley glaciers on the north-

466 facing slopes, the eastern- and westernmost ones, were disconnected from this uniform ice mass. 

467 The lengths of the north-facing glaciers were between 1.5 and 5 km. The westernmost valley glacier 

468 was the lowest glacier in the study area, which terminated at an altitude of 940 m asl. According to 

469 the calculations made by Profiler v.2 (Benn and Hulton, 2010) the thicknesses of the ice below the 

470 cirques were between 130 and 210 m. On the south-facing slopes below the highest peak Botin, only 

471 two small cirque glaciers existed, covering an overall area of less than 1 km2.

472

473 Figure 10: (a) Palaeoglacier geometry with 50 m glacier contour lines, (b) glacier extent with 

474 longitudinal profiles used in glacier reconstruction, and (c) the modelled ice thickness of the Velež 

475 glaciers. Numbers in (b) indicate separate valley and cirque glaciers used for the ELA calculations. For 

476 the geomorphology and sampling locations refer to Figure 2a.

477

478 The Crvanj Mountain hosted a small ice field and two cirque glaciers with an overall area of 23.9 km2 

479 during the maximum phase of glaciation (Figure 11a). Four outlet glaciers, heading towards N, E and 

480 S directions (Figure 11b), drained the ice field. The outlet glaciers were between 2 and 3.5 km long 

481 and up to 1.5 km wide. They ended at elevations between 900 and 1200 m. The northern outlet 

482 glacier might have reached lower altitudes, but owing to landmines in that area we were not able to 
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483 make the geomorphological investigation. The greatest ice thickness was calculated on the plateau 

484 area, reaching approximately 200 m (Figure 11c). The two cirque glaciers formed on the northwest-

485 facing slopes and covered an area of 1.4 km2.

486

487 Figure 11: (a) Palaeoglacier geometry with 50 m glacier contour lines, (b) glacier extent with 

488 longitudinal profiles used in glacier reconstruction, and (c) the modelled ice thickness of the Crvanj 

489 ice field. Numbers in (b) indicate separate outlet and cirque glaciers used for the ELA calculations. For 

490 the geomorphology and sampling locations refer to Figure 4a.

491

492 4.4 Palaeo-equilibrium line altitudes

493 The mean ELA of palaeoglaciers on the Velež Mountain was calculated to 1388 m (σ=186) using the 

494 BR ratio of 1.9 ± 0.81 (Rea, 2009) (Table 4). While the mean ELA of the north-facing valley glaciers 

495 was 1292 m, on the south-facing slopes where only two cirque glaciers formed, the ELA was 434 m 

496 higher. Applying the same BR ratio, the mean palaeo-ELA on the Crvanj Mountain was found at 1541 

497 m (σ=46) (Table 4). The ELA of the ice field with pertaining outlet glaciers was calculated to 1476 m, 

498 while the ELA of cirque glaciers was 104 m higher. Northeast oriented glaciers had in general lower 

499 ELAs, which is reasonable owing to differences in solar radiation and temperatures between north 

500 and south facing slopes. However, the NE-SW difference in ELA is approximately 8-times higher on 

501 Velež (NE-SW ELA difference=434 m) compared to Crvanj (NE-SW ELA difference=52 m), which can 

502 be explained by different morpho-climatological conditions. The morphology of the Velež Mountain 

503 with steep north-facing slopes allowed the formation of valley glaciers, where the accumulation was 

504 likely dominated by windblown deposition and avalanches. These two mechanisms were not as 

505 pronounced on the Crvanj Mountain due to the ice field type glaciation and consequently the local 

506 ELA differences were relatively small.
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507 To crosscheck the ELA calculations using the AABR method, we also applied the AAR method using 

508 the ratio of 0.6 (Benn and Evans, 1998; Nesje and Dahl, 2000; Porter, 1977), which is the most widely 

509 accepted, but not necessarily one of the most accurate methods (and ratios) for the palaeo-ELA 

510 calculations (e.g. Kern and László, 2010). The results differ insignificantly, since the mean ELA for the 

511 Velež Mountain is calculated to 1392 m and for the Crvanj Mountain to 1596 m. Taking into account 

512 the ELAs calculated with the AABR method, the Velež Mountain ELA is 153 m lower than the ELA on 

513 the Crvanj Mountain and 204 m lower in the case of AAR method.

514

515 Table 4: The estimated palaeoELAs (in metres) for all reconstructed palaeoglaciers on the Velež and 

516 Crvanj mountains (see Figure 10b and 11b for the location of each glacier). The applied method is 

517 area altitude balance ratio (AABR) with a ratio of 1.9 ± 0.81, which is representative for mid-latitude 

518 maritime glaciers according to empirically derived results by Rea (2009).

519

520 4.5 Degree-day model outputs

521 Because snowmelt equals snow accumulation at the ELA under equilibrium conditions, our melt 

522 predictions using a simple degree-day model show the amount of accumulation required to sustain 

523 the reconstructed glaciers (Table 5). Hypothesizing the existence of glaciers with the reconstructed 

524 ELAs on the Velež and Crvanj mountains in the recent climate, the annual accumulation required to 

525 offset melting would need to be 9304 and 8295 mm of water equivalent, respectively. Further 

526 hypothesizing the accumulation on palaeoglaciers was similar to the modern MAP at Nevesinje and 

527 the modern annual temperature range was same as today, then the temperature depression 

528 between 9 and 10 °C for Velež and between 8 and 9 °C for Crvanj is required to sustain the 

529 palaeoglaciers with reconstructed ELAs. This is a very rough estimation because annual accumulation 

530 on glacier approximates winter and not annual precipitation, excluding local inputs from avalanching 

531 and wind-blown snow. The Velež glaciers on the north-facing slopes were likely influenced by the 
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532 aforementioned local inputs, which makes the melt predictions further overestimated. If assuming 

533 higher annual temperature range because of possibly more continental climate during glacial stages, 

534 even higher accumulation is required to balance melting.

535

536 Table 5: The degree-day model outputs for the Velež and Crvanj palaeoglaciers based on the 

537 reconstructed mean ELAs for each mountain (ELA Velež =1388 m, ELA Crvanj=1541 m) and modern 

538 climate data from Nevesinje (891 m asl) (mean annual temperature=8.6 °C, mean annual 

539 temperature range=18.9 °C, MAP=1795 mm) for the period 1961-1990 (Data courtesy Federal 

540 Hydrometeorological Institute, Sarajevo).

541

542 5. Discussion

543 5.1 36Cl cosmogenic nuclide dating uncertainties

544 Apart from analytical and production rate uncertainties, geological uncertainties also have to be 

545 considered when interpreting exposure ages. The latter often overshadow the first two and are 

546 principally subject to prior-exposure (inheritance), reworking and exhumation of boulders on 

547 moraines and erosion rates. Influence of vegetation and snow cover as well as tectonic movements 

548 and other geomorphological processes can also play an important role in the interpretation of 

549 exposure ages. Below, we discuss in detail the most relevant uncertainties for our study area.

550 5.1.1 Moraine degradation and exhumation of boulders

551 Although moraines in karst areas dating to Last Glaciation but also to older Pleistocene glaciations 

552 (e.g. Hughes et al., 2011, 2010) are believed to be well-preserved because of the absence or minimal 

553 fluvial reworking, they nevertheless degrade due to karst denudation and the topography is getting 

554 smoother over time. Moraine crest lowering is more pronounced in its early stage, within the first 

555 few thousands of years after the moraine deposition, when majority of large boulders are exhumed 

556 (Putkonen and Swanson, 2003). However, there is a substantial difference in the intensity of 



24

557 degradation among different types of moraines. Moraines with broad and flat crests, such as 

558 hummocky moraines, will degrade less than for example lateral moraines with sharp crests and steep 

559 slopes (Applegate et al., 2010; Putkonen and Swanson, 2003). In our case, the dated lateral moraines 

560 exhibit smooth crest morphology and few large boulders are present on their crests. This indicates 

561 that their post-glacial evolution has been influenced by a relatively marked degradation. Several 

562 studies highlighted the problems related to the degradation of moraines and consequently the 

563 boulder exhumation, resulting in cosmogenic ages that are inconsistent with the stratigraphic order 

564 of moraines (e.g. Hughes et al., 2018; Palacios et al., 2019; Roy et al., 2017; Schaefer et al., 2008). The 

565 influence of exhumation is particularly evident when trying to date moraine boulders older than Late 

566 Pleistocene (Hughes et al., 2018). According to the moraine degradation model (Applegate et al., 

567 2010; Putkonen and Swanson, 2003), our dated moraines are supposed to degrade in the order of 

568 ~20 m since Lateglacial. Our exposure ages likely reflect a range of ages when the active degradation 

569 of the surface took place, and therefore in high precipitation regions we prefer to consider the oldest 

570 age within a group as the best estimation of the true depositional age. Without erosion corrections, 

571 these figures are 10.5 ± 0.9 ka for the Velež, and 15.6 ± 2.3 ka for the Crvanj mountains. The oldest 

572 age in both cases is represented by the tallest and overall largest boulder within the group of 

573 samples, which further demonstrates that the exhumation of boulders is one of the main geological 

574 uncertainties to be considered while interpreting exposure ages in similar environments. This is in 

575 accordance with the analysis of a large dataset of glacial boulders, confirming that tall boulders, most 

576 likely with minimum post-glacial shielding, yield higher quality exposure ages (Heyman et al., 2016). 

577 5.1.2 Inheritance

578 The inheritance is the initial nuclide concentration that is already in the rock before the beginning of 

579 the final exposure (Ivy-Ochs and Schaller, 2009). Therefore, one of the most important assumptions 

580 of the cosmogenic surface exposure dating is that the inheritance is negligible or could be 

581 determined (Schmidt et al., 2011). Several studies related to moraine boulder inheritance indicate 
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582 that the glacier scouring of the bedrock is a very efficient mechanism in removing the pre-existing 

583 cosmogenic component (e.g. Applegate et al., 2012, 2010; Davis et al., 1999; Dortch et al., 2013; 

584 Hallet and Putkonen, 1994; Heyman et al., 2011). Several studies carried out on the moraine 

585 boulders in the Taurus Mountain Range of Turkey since 2008 were compiled by Çiner et al. (2017) 

586 (their figure 11), who concluded that out of 183 limestone samples, only 6 boulders (3.3%) were 

587 outliers attributed to inheritance; the authors hence assumed this figure close to negligible. Although 

588 few cases where inheritance is reported from moraine boulders (e.g. Dortch et al., 2013), we believe 

589 that given the high erosion rates of the boulders, mainly due to high precipitation in our study area, 

590 any inheritance related to prior exposure would have been zeroed. We therefore neglected 

591 inheritance as a factor in our age calculations.

592 5.1.3 Karst denudation rate

593 In karst terrains, both chemical denudation and mechanical erosion processes operate and the total 

594 karst denudation rate is the sum of both processes (Ford and Williams, 2007). Chemical denudation 

595 rates established within karst vary due to runoff of precipitates, temperature and partial pressure of 

596 carbon dioxide in surrounding atmospheres (Gunn, 2004). The chemical denudation rates are 

597 regularly calculated through monitoring of dissolved mater content in karst springs (Ford and 

598 Williams, 2007; Veress, 2009). Those values are non-relevant for determining karst denudation rates 

599 on exposed carbonate bedrock (e.g. karren, glacial boulders), since there is no effect of enhanced 

600 dissolution in epikarst subsoil environments. Relevant methods for exposed carbonate surfaces 

601 include continual in-situ measurements by means of micro-erosion meter (Cucchi et al., 1995; Furlani 

602 et al., 2009; Veress, 2009). However, these are only relevant for the recent climatic conditions. 

603 Results from the northern part of the Dinaric Mountains highlight significant differences, which are 

604 the result of lithological control coupled with climatic setting (Furlani et al., 2009). There are 

605 differences between dolomites and calcarenites (~10 mm ka-1) and micritic limestones (~40 mm ka-1) 

606 (Cucchi et al., 1995; Furlani et al., 2009). Substantial differentiations in denudation rates are a 
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607 consequence of climatic setting and even small climatic variations (Mediterranean and sub-alpine 

608 climate) can yield double denudation rates (Furlani et al., 2009). There is a shortage of detail 

609 monitoring of micro-erosion meter denudation rates in high Dinaric environments. Available data 

610 from the nearby Julian Alps on micritic limestones show average denudation rate of ~40 mm ka-1 with 

611 considerable increases (up to ~100 mm ka-1) within depressions with thicker snow cover (Kunaver, 

612 1979). Those results correspond, in the order of magnitude, with other values obtained with the 

613 same method in similar environments (Forti, 1984; Pulina, 1974). Furthermore, recently applied 

614 measurements of 36Cl concentrations for establishing denudation rates in different karst terrains 

615 around the world (Levenson et al., 2017) and in SE France (Thomas et al., 2018) show denudation 

616 rates in the order of 40±20 mm ka-1. According to Thomas et al. (2018) there is no clear connection 

617 between climatic spatial gradients and denudation rates; the latter are rather influenced by the 

618 surface inclination. On the Velež and Crvanj mountains we deducted denudation rate at 40 mm ka-1 

619 even though previous researchers in the Balkans did not apply denudation corrections in cosmogenic 

620 dating (Pope et al., 2015) or used rather low rates as 5 mm ka-1 (e.g. Gromig et al., 2018; Styllas et al., 

621 2018) (Table 6).

622

623 Table 6: A list of different dating methods applied to glacial landforms in the Balkan Peninsula. Note 

624 that calculations of 36Cl cosmogenic exposure ages from Mount Chelmos and Mount Olympus are 

625 based on the production rates from Stone et al. (1996) and Schimmelpfennig et al. (2011), 

626 respectively. For comparison, two boulder-ages from Mount Chelmos (CH10 (11.03 ± 0.9 ka), CH11 

627 (8.76 ± 0.70 ka)) (Pope et al., 2015) and two boulder-ages from Mount Olympus (TZ03 (12.44 ± 1.07 

628 ka), MK12 (12.37 ± 1.07 ka)) (Styllas et al., 2018) were recalculated using the production rates of 

629 Marrero et al. (2016b). The two ages from Mount Olympus were also corrected for snow and 

630 erosion, using the same values as in the paper of Styllas et al. (2018). The recalculated ages are 13-

631 14% younger for Mount Chelmos and 23-24% younger for Mount Olympus with respect to the 
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632 published ages. 14C ages from Snežnik were recalculated according to the IntCal13 calibration 

633 (Reimer et al., 2013). Recalculated ages are marked with asterisk.

634

635 5.1.4 Shielding

636 Post-depositional processes such as shielding by snow, vegetation, sediment and soil can reduce 

637 nuclide concentrations on boulders, resulting in underestimation of landform ages. Although most 

638 studies on moraines indicate that snow cover is a second-order process (~10% or less) (Schildgen et 

639 al., 2005), a relatively thick snow cover might have been present in our study area because of high 

640 precipitation potentials. As Velež and Crvanj mountains are geographically close, we assumed 

641 identical snow shielding acting on the sampled boulders. We estimated a snowpack of 25, 100, 100, 

642 100, 50, 25 cm of snow on Nov, Dec, Jan, Feb, Mar and Apr on top of boulders and calculated that 

643 the total effect of snow correction of our samples to be around 4.9% (i.e. snow correction make the 

644 ages 4.9% older). Doubling the snowpack data would add another 5.4% in average. 

645 Another shielding factor might be related to vegetation. The presence of forest increases boulder 

646 instability in matrix-rich moraines. Trees, soil and leaf litter decrease the cosmic rays reaching the 

647 rock by only a few percent (Kubik et al., 1998). However, as trees grow or fall even large boulders can 

648 be toppled (cf. Cerling and Craig, 1994). Assuming that dense trees covered the study areas, as we 

649 see today, one would need to consider the shielding due to the vegetation during the exposure time 

650 of the boulders.

651 5.2 Interpretation of 36Cl cosmogenic nuclide dating results from the Velež and Crvanj mountains

652 After taking into account all relevant cosmogenic nuclide dating uncertainties for both study areas, 

653 the most probable age of the dated moraines is Lateglacial, spanning from Oldest Dryas for Velež 

654 (14.9 ± 1.1 ka) to Younger Dryas for Crvanj (11.9 ± 0.9 ka). These are still to be considered as 
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655 minimum ages. To better understand a relevance of the obtained ages, these have been put into the 

656 geomorphological and climate context. 

657 According to the geomorphological evidence, the dated moraines mark the largest extent of glaciers 

658 in both study areas. These have been estimated to approximately 28 km2 for Velež and 24 km2 for 

659 Crvanj using field evidence combined with the glacier flow-line model. The ELAs have been calculated 

660 to 1388 m for Velež and 1541 m for Crvanj by applying the AABR method. Glaciers of similar size with 

661 so low ELAs during Younger or Oldest Dryas have not been reported until now for the Balkan 

662 Peninsula; they have been recorded only in the form of cirque glaciers (e.g. Gromig et al., 2018; 

663 Hughes et al., 2011, 2010; Kuhlemann et al., 2009; Pope et al., 2015; Ribolini et al., 2011, 2018; 

664 Styllas et al., 2018). Smaller moraines that are present at higher altitudes compared to the dated 

665 moraines in our study area (Figures 2 and 4) are in better agreement with the above-cited Lateglacial 

666 moraines and their corresponding ELAs. We would also assume that the dated moraines on both 

667 mountains pertain to the same glacial period, because they mark the largest extent of glaciers in 

668 their respective areas, which were of similar size. These local differences in ages might result from 

669 different denudation rates between dolostone and limestone lithologies, the first being dominant in 

670 the Crvanj area and the last in the Velež area (supplementary Table S1). Moreover, it would be 

671 unrealistic to assume that all LGM moraines would have been washed away or entirely degraded, 

672 also because moraines in karst environments generally tend to be better preserved compared to 

673 moraines in the typical alpine environments, where slope and fluvial processes are much more 

674 intense. Thus, it is difficult to justify the Lateglacial age of the reconstructed glaciers on Velež and 

675 Crvanj from the geomorphological context.

676 Temperature depressions between 8 and 10 °C are required to sustain the reconstructed glaciers 

677 with pertaining ELAs according to the degree-day model simulations (Table 5) if considering the 

678 accumulation on palaeoglaciers was similar or less than the modern MAP. This is in accordance with 

679 the reconstructed LGM temperature drop inferred from pollen for northern Greece and central Italy 
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680 (Peyron et al., 1998) as well as from ELAs for the Central Dinaric Mountains (Kuhlemann et al., 2008). 

681 Though some of the reported temperature depressions for the Oldest and Younger Dryas in the 

682 Balkan Peninsula are even more pronounced from those at LGM, like for example pollen inferred 10-

683 14°C drop in temperature for Oldest Dryas and around 10°C for Younger Dryas in the Lake Maliq in 

684 Albania (Bordon et al., 2009). This is highly unlikely, also because no such drop in temperature has 

685 been confirmed elsewhere in the Mediterranean, while the Younger Dryas temperature depression 

686 inferred from the distribution of relict rock glaciers in the SE European Alps has been estimated to 3-

687 4°C (Frauenfelder et al., 2001). MAAT depression of 4°C for Velež and Crvanj would result in 4807-

688 5601 mm of water equivalent (w.e.) of annual melt at ELA, which is unrealistic. However, a drop in 

689 temperature of 5-6°C, which would result in 4064-4807 mm w.e. of snow accumulation required to 

690 balance melting at the ELAs of the reconstructed glaciers (Table 5), might be reasonable. The modern 

691 glaciers in the Pacific Coast Range with maritime climate (e.g. South Cascade glacier) having very high 

692 winter mass balance (~2000-4000 mm w.e.) and MAAT at the ELA close to or even above 0°C 

693 (Krimmel, 2001; Ohmura et al., 1992; WGMS, 2016), are good modern analogues to our 

694 reconstructed glaciers. Nevertheless, having glaciers in the Velež and Crvanj mountains with similar 

695 winter mass balance as today in the Pacific Coast Range would require substantially higher MAP than 

696 today. 

697 The boulder ages reflect complex exhumation and denudation history, which at this point do not 

698 allow obtaining more precise moraine chronologies for the Velež and Crvanj mountains. Future work 

699 is needed to better understand the exhumation and denudation processes and their influence on the 

700 cosmogenic exposure dating approach in a karst landscape like the Dinaric Mountains. Both study 

701 areas as well as the entire country of Bosnia and Herzegovina lack any previous knowledge on the 

702 timing of glaciations, which makes the correlation of the age data very difficult. This is however a 

703 new dataset and presents a relevant contribution towards better understanding of the glacial 

704 chronologies in the Dinaric Mountains.
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705 5.3 Glacial chronologies in the Balkans and elsewhere in the Mediterranean 

706 Although the mountains in the Dinarides and elsewhere in the Balkan Peninsula exhibit large areas of 

707 glacially modified landscape, they are still poorly represented by age data, which makes a robust 

708 comparison with the Velež and Crvanj data rather difficult. The closest area with established glacial 

709 chronologies are mountains of Montenegro (Hughes et al., 2011, 2010) (Table 6, Figure 12), where 

710 Younger Dryas has been recorded only in the form of cirque glaciers, having ELA at 1465 m on the 

711 coastal Orjen Mountain. More distant Balkan areas with existent glacial chronologies, but still 

712 relevant for comparison with the Velež and Crvanj mountains, are the Šar Planina and Galičica 

713 mountains in the Former Yugoslav Republic of Macedonia (FYROM), and Mount Chelmos and Mount 

714 Olympus in Greece. The glacier advance in the course of Younger Dryas on the aforementioned 

715 mountains is also reported as cirque glaciations, with ELAs of 2300-2400 m on the Šar Planina 

716 Mountains (Kuhlemann et al., 2009), 2130 m on the Galičica Mountain (Gromig et al., 2018; Ribolini 

717 et al., 2011) and 2114 m on Mount Chelmos (Pope et al., 2015). ELA for Mount Olympus was 

718 estimated to 2200-2600 m for the LG1-3 Lateglacial phase, which corresponds to Younger Dryas 

719 period after the recalculation of the ages using the same production rates as those applied to our 

720 moraine boulders (Table 6). All the above-mentioned published ELAs have been recalculated 

721 (supplementary Table S2) to the same ELA method, and hence they are entirely comparable. The 

722 Younger Dryas advances in other Mediterranean mountains have been confirmed in the High Atlas 

723 (Hughes et al., 2018), Taurus Mountains (Sarıkaya and Çiner, 2017), Iberian Peninsula (Palacios et al., 

724 2016) and Maritime Alps (Federici et al., 2017). While the Younger Dryas glaciers where restricted to 

725 cirque areas in the High Atlas, Taurus Mountains and majority of Iberia, they reached the size of 

726 short valley glaciers in the Central Pyrenees (García-Ruiz et al., 2016) and Maritime Alps (Federici et 

727 al., 2017). Nevertheless, the magnitude of glaciation on the Crvanj Mountain is outstanding when 

728 compared with other Younger Dryas glaciers in the Balkan Peninsula and elsewhere in the 

729 Mediterranean. 
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730 Glaciers in the Balkan Peninsula dated to the Oldest Dryas were as well small in extent, with ELAs 

731 between 2200 and 2350 m on the Šar Planina Mountains (Kuhlemann et al., 2009), 2250 m on Mount 

732 Pelister (Ribolini et al., 2018), and at 2000 m on the Galičica Mountain (Ribolini et al., 2011). The 

733 Oldest Dryas advance on Orjen has not been recognized by Hughes et al. (2010), but from the 

734 minimum ages provided by U-series dating that show early Holocene ages (Table 6), these can be 

735 interpreted in terms of Younger Dryas (as interpreted by Hughes et al. (2010) or Oldest Dryas 

736 glaciation with ELA at 1465 m. The calculated ELA for Velež is extremely low (1388 m) when 

737 compared with the aforementioned ELAs, even after recalculating all the published ELAs 

738 (supplementary Table S2). The Oldest Dryas advance in the Eastern Mediterranean has been 

739 recognized on Dedegöl Mountains, where moraines were dated to between 16.4 ± 0.7 ka and 12.0 ± 

740 1.0 ka (Köse et al., 2018), while Mt. Akdağ (14–17 ka), Mt. Sandıras (13–20 ka) and Erciyes Volcano 

741 (14–17.5 ka) show similar Lateglacial chronologies (Sarıkaya and Çiner, 2017). Similar ages have also 

742 been reported from other Mediterranean mountains (Federici et al., 2011; Palacios et al., 2016). 

743 Several marine and continental proxies from the Adriatic Sea (e.g. Combourieu-Nebout et al., 2013; 

744 Favaretto et al., 2008; Rossignol-Strick, 1995) and Balkan region (e.g. Aufgebauer et al., 2012; Bordon 

745 et al., 2009; Vogel et al., 2010), respectively, indicate that the Younger Dryas and Oldest Dryas were 

746 cold events. However, the relative amount and source of moisture is still a matter of debate. While 

747 some argue for cold and dry glacier advance during Lateglacial (Ribolini et al., 2018; Styllas et al., 

748 2018), others suggest the climate at that time was humid (Hughes et al., 2011, 2010; Pope et al., 

749 2015). Thus, understanding palaeo-precipitation sources is of major importance for understanding 

750 the zonal partitioning of glacier behaviour in the Balkan Peninsula. Pope et al. (2015) suggested that 

751 the moisture bearing atmospheric systems delivering winter precipitation in the west central Balkan 

752 Peninsula were different from those influencing southern Greece, the first being influenced by 

753 cyclogenesis in the northern Adriatic (Hughes et al., 2010) whereas the latter likely received winter 

754 precipitation from a western or southern source. The position of the polar jet stream is a key factor 

755 in controlling precipitation pattern in the Mediterranean as well in the Balkan Peninsula. A general 
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756 idea of the southern shift of the polar jet stream during LGM, which brought a southward shift of the 

757 North Atlantic storm tracks to about 40°N (Hofer et al., 2012; Laîné et al., 2009), is well supported by 

758 atmospheric circulation models, but how the local synoptic circulation was acting in the 

759 Mediterranean area is still debatable. Recent findings suggest a southerly moisture transport across 

760 the southern Mediterranean and then approaching the Alps from southward direction (Luetscher et 

761 al., 2015), which is consistent with the idea of the moisture bearing atmospheric systems delivering 

762 high precipitation amount, mainly during spring and autumn, to the west central Balkans. While this 

763 precipitation pattern was suggested for the LGM, it might hold true also for the Younger Dryas and 

764 Oldest Dryas events, likely for a shorter period and not as intense as during LGM, but still supporting 

765 the idea, to some extent, of a relatively large ice masses on Velež and Crvanj during that time. 

766 Moreover, the Adriatic coast during LGM and Oldest Dryas was much further south with respect to 

767 the Younger Dryas (Figure 13a). This suggests that during Younger Dryas greater amount of moisture 

768 was available in the low-level jet, which is the main source for the orographic precipitation in the 

769 Dinaric Mountains. Even if temperatures at that time were not as low as during LGM, the available 

770 moisture might have been higher.

771 It is also worth noting the role of the orographic barrier of the Dinaric Mountains in capturing (today, 

772 and most likely also in the past) most of the humidity from the Adriatic Sea air masses, leaving the 

773 inland part of the Balkans relatively dry (Hughes et al., 2010). This effect is reflected in a strong west-

774 east gradient in ELA, which was suggested for the last cold stage glaciers in Montenegro and Greece 

775 by Hughes et al. (2011, 2010, 2006). A rise in ELA of 100 m for every 15 km inland was calculated for 

776 the Montenegrin glaciers by the same authors. Similar pattern of the inland ELA rise can be 

777 recognized also for the Younger Dryas and Oldest Dryas glaciers in the part of the Balkan Peninsula 

778 facing the Adriatic Sea (Figure 12b and 12c), which suggests the west-east gradient in ELA was 

779 characteristic throughout the Late Pleistocene. We estimated a rise in the ELA of 94 m during the 

780 Younger Dryas and 77 m for the Oldest Dryas for every 15 km inland. Very low ELAs in our study 

781 areas seem to be shifted further inland (Figures 12b and 12c). This pattern might be related to the 
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782 fact that the first orographic barriers in the Neretva catchment are located more than 50 km from 

783 the Adriatic coast and that specific topoclimatic conditions controlled the ELA depression. This might 

784 be the reason why the Oldest Dryas ELA on Velež would have been lower than the ELA on Orjen, 

785 since the modern MAP on Orjen is more than twice as high as on Velež.

786 On some of the massifs in the Iberian Peninsula the glaciers between 17.5 and 14.5 ka deposited 

787 moraines that are spatially close to the LGM moraines (Palacios et al., 2016), which seem to be the 

788 case also for some of the Turkish Mountains (e.g. Sarıkaya et al., 2014, 2009). However, in the Velež 

789 and Crvanj mountains we did not find any geomorphological evidence that would imply larger glacier 

790 extent, but closely spaced to the one we dated. It might be true that these large lateral-terminal 

791 moraine complexes are products of several glacial stages, as has been already suggested by Žebre 

792 and Stepišnik (2015a), which would imply that the glaciers on Velež and Crvanj reached their Late 

793 Pleistocene maximum extents well after the global LGM. This is in agreement to some extent with 

794 the ages obtained in the Šar Planina Mountain (Kuhlemann et al., 2009) and Montenegrin Mountains 

795 (Hughes et al., 2011, 2010), where the moraines indicative for the local LGM were dated to the 

796 period following the global LGM. The cosmogenic ages from terminal moraines in the Rila Mountain 

797 (Kuhlemann et al., 2013) indicate that the local LGM extent occurred in two phases, i.e. prior and 

798 after the global LGM. In contrast with the records in FYROM and Montenegro, the Late Pleistocene 

799 glacier maximum on Mount Chelmos was dated to 40-30 ka and thus predates the global LGM (Pope 

800 et al., 2015) (Table 6). While a relatively large LGM glaciation is reported from the Rila Mountains 

801 (Kuhlemann et al., 2013), with 29 valley glaciers covering an area of 430 km2 and having ELAs 

802 between 2150 and 2290 m, from the Šar Planina Mountains with valley glaciers several km long 

803 having ELAs between 1900 and 2300 m (Kuhlemann et al., 2009), and from Montenegro with several 

804 smaller valley and cirque glaciers with a total area of 56 km2 and ELAs between 1456 and 1952 m 

805 (Hughes et al., 2011, 2010), much smaller glaciation in the form of cirque and small valley glaciers has 

806 been recognized on Mount Chelmos (Pope et al., 2015), covering less than 5 km2 in total, with the 

807 mean ELA of 1986 m. 
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808 The evidence for older, Middle Pleistocene glaciations, when the glaciers in Montenegro, Greece and 

809 Croatia would have reached their maximum extent (Table 6), is missing in our study areas. It is 

810 obvious from several studies that the timing of glaciations not only varied across the Mediterranean 

811 mountains (Hughes and Woodward, 2017), but also on a regional scale across the Balkan Peninsula. 

812 Although our findings seem to match to a considerable extent to the results from the Balkan 

813 Peninsula and some other Mediterranean mountains, more research is needed in Bosnia and 

814 Herzegovina and in the Dinaric Mountains in general to better understand the climatic controls on 

815 glaciations and the asynchrony of glacier fluctuations amongst different areas. The focus of future 

816 research should be on moraine build-up during several glacial stages and possible age conflicts 

817 between different dating methods, as recently pointed out also by Rodríguez-Rodríguez et al. (2018).

818

819 Figure 12: (a) All locations in the Balkan Peninsula where moraines/outwash have been dated so far. 

820 Base layer of mountain belts is from https://ilias.unibe.ch/goto.php?target=file_1049915, based on 

821 the mountain definition by Kapos et al. (2000). Bathymetric data is from the European Marine 

822 Observation and Data Network (http://www.emodnet.eu/), while the sea level data for LGM, Oldest 

823 Dryas and Younger Dryas is from Lambeck et al. (2011). ELA as a function of the distance from the 

824 Adriatic Sea for (b) Younger Dryas and (b) Oldest Dryas. Only areas with absolute age data are taken 

825 into account.

826

827 6. Conclusions

828 The Velež and Crvanj mountains in the Dinaric mountain karst in Bosnia and Herzegovina were 

829 extensively glaciated during the Late Pleistocene despite their low altitude (<2000 m asl). During the 

830 most extensive glaciation total glacier area was 28.2 km2 on the Velež Mountain and 23.9 km2 on the 

831 Crvanj Mountain. High karst plateaux were covered by ice fields reaching thicknesses up to 200 m. 

832 Valley and outlet glaciers reached as far down as ~900 m asl, where large lateral-terminal moraine 

https://ilias.unibe.ch/goto.php?target=file_1049915
http://www.emodnet.eu/
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833 complexes were deposited. Twenty glacial boulders from the largest two moraine complexes were 

834 sampled and dated using cosmogenic 36Cl surface exposure dating. The obtained ages correspond to 

835 the Lateglacial advances, namely the Younger Dryas on Crvanj and the Oldest Dryas on Velež, 

836 although the age difference in the maximum glacier extent between the two mountains might result 

837 from different denudation rates. However, the magnitude of glaciation along with the equilibrium 

838 line altitude and degree day model simulations are exceptional in terms of the Lateglacial evidence in 

839 the Balkan Peninsula. A possible explanation for that might be an increased moisture supply during 

840 Lateglacial due to larger extent of the Adriatic Sea with respect to LGM along with specific 

841 topoclimatic conditions controlling the ELA depression. This paper presents the first attempt to date 

842 moraines in the Dinaric mountain karst using cosmogenic 36Cl surface exposure dating and is thus an 

843 important contribution towards a better understanding of the timing of glaciations in the Dinaric 

844 Mountains. However, dating moraines in this type of karst with high precipitation amounts remains 

845 problematic owing mainly to unknown denudation rates and the magnitude of moraine degradation.

846
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°N (DD) °E (DD) (m, asl) (m) (cm)

1 BU16-01 43.3565 18.0583 1010 2x2.5x1.6 3 0.9986

2 BU16-02 43.3529 18.0589 1055 1x1x0.5 3 0.9970

3 BU16-03 43.3487 18.0585 1070 1.5x0.8x0.6 3 0.9990

4 BU16-04 43.3461 18.0568 1105 1.5x1.5x0.6 2.5 0.9982

5 BU16-05 43.3433 18.0553 1130 2x1.8x1.2 3 0.9971

6 BU16-06 43.3486 18.0372 1200 2.4x3x1.5 2 0.9983

7 BU16-07 43.3498 18.0433 1145 1.5x1x0.6 2 0.9897

8 BU16-08 43.3494 18.0475 1130 1.5x0.8x0.4 2 0.9886

9 BU16-09 43.3502 18.0513 1095 1x0.8x0.5 4 0.9915

10 BU16-10 43.3513 18.0526 1075 1x0.5x0.45 2 0.9939

11 CR16-01 43.4069 18.2533 1208 1x2.5x1 3 0.9956

12 CR16-02 43.4072 18.2515 1180 0.9x0.4x0.6 3 0.9927

13 CR16-03 43.4076 18.2514 1180 1x1.5x0.2 3 0.9946

14 CR16-04 43.4098 18.2510 1170 1.7x1.2x0.6 3 0.9935

15 CR16-05 43.4102 18.2496 1170 3x4x1.5 3 0.9947

16 CR16-06 43.4105 18.2481 1175 1.5x1.8x0.5 3 0.9925

17 CR16-07 43.3979 18.2497 1187 1x1.5x1 4 0.9824

18 CR16-08 43.3979 18.2504 1202 1x1x0.4 4 0.9866

19 CR16-09 43.3982 18.2527 1187 2.5x2x1.5 4 0.9960

20 CR16-10 43.3983 18.2534 1187 1.4x1x1 3 0.9960

Latitude 

(WGS84)

Longitude 

(WGS84)
Elevation

Sample 

thickness

Topography 

correction 

factor

Boulder 

dimensions 

(LxWxH)

Sample ID



 

  

Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 CO2 Sm Gd U Th

(LOI)

(wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (ppm) (ppm) (ppm) (ppm)

1 BU16-01 0.02 54.87 0.04 0.01 0.79 0.01 0.02 0.01 0.38 0.01 43.80 0.05 0.05 2.30 0.20 20.8 ± 1.9

2 BU16-02 0.11 54.72 0.11 0.03 0.89 0.01 0.03 0.01 0.42 0.01 43.60 0.05 0.05 1.70 0.20 37.5 ± 3.4

3 BU16-03 0.29 54.17 0.12 0.09 0.69 0.01 0.01 0.01 0.96 0.01 43.60 0.13 0.19 2.60 0.20 25.6 ± 2.3

4 BU16-04 0.02 55.21 0.04 0.01 0.55 0.01 0.01 0.01 0.43 0.01 43.70 0.05 0.05 1.60 0.20 12.9 ± 1.2

5 BU16-05 0.01 54.28 0.04 0.01 1.55 0.01 0.01 0.01 0.19 0.01 43.90 0.05 0.05 0.70 0.20 22.9 ± 2.1

6 BU16-06 0.01 55.65 0.04 0.01 0.47 0.01 0.01 0.01 0.18 0.01 43.60 0.05 0.05 1.50 0.20 18.6 ± 1.7

7 BU16-07 0.04 53.66 0.04 0.01 2.14 0.01 0.02 0.01 0.33 0.01 43.70 0.05 0.05 2.10 0.20 27.2 ± 2.5

8 BU16-08 0.01 55.06 0.04 0.01 0.50 0.01 0.03 0.01 0.24 0.01 44.10 0.05 0.05 1.50 0.20 21.7 ± 2.0

9 BU16-09 0.03 54.59 0.04 0.01 0.74 0.01 0.02 0.01 0.44 0.01 44.10 0.05 0.05 1.10 0.20 19.5 ± 1.8

10 BU16-10 0.02 54.82 0.04 0.01 0.68 0.01 0.02 0.01 0.25 0.01 44.10 0.05 0.06 2.10 0.20 20.5 ± 1.9

11 CR16-01 0.37 34.16 0.15 0.13 17.48 0.01 0.04 0.06 1.11 0.02 46.10 1.20 1.46 3.10 0.40 410.7 ± 37.1

12 CR16-02 0.98 26.51 0.34 0.36 15.25 0.01 0.04 0.07 17.28 0.05 38.80 1.03 1.04 1.40 1.00 139.3 ± 12.6

13 CR16-03 0.16 32.27 0.19 0.06 19.21 0.01 0.03 0.02 0.65 0.01 47.10 0.33 0.59 1.20 0.20 450.0 ± 40.3

14 CR16-04 0.29 32.69 0.14 0.12 18.68 0.01 0.05 0.06 1.00 0.02 46.60 0.79 1.00 4.80 0.30 283.5 ± 25.4

15 CR16-05 0.58 30.49 0.29 0.20 17.45 0.01 0.04 0.02 6.57 0.03 44.00 0.54 0.55 0.80 0.50 279.5 ± 25.1

16 CR16-06 0.44 32.24 0.19 0.16 18.38 0.01 0.04 0.05 2.21 0.03 45.90 0.49 0.59 3.60 0.40 340.3 ± 30.6

17 CR16-07 0.15 54.28 0.08 0.06 0.76 0.01 0.02 0.03 0.65 0.01 43.90 0.41 0.52 0.80 0.20 61.4 ± 5.6

18 CR16-08 0.11 43.59 0.14 0.04 9.79 0.01 0.02 0.06 0.52 0.01 45.50 0.29 0.30 0.50 0.20 155.7 ± 14.1

19 CR16-09 0.08 54.02 0.07 0.03 1.10 0.01 0.02 0.05 0.42 0.01 44.20 0.58 0.76 0.80 0.20 31.8 ± 2.9

20 CR16-10 0.04 54.39 0.04 0.02 0.93 0.01 0.02 0.03 0.38 0.01 44.10 0.26 0.32 0.50 0.20 63.8 ± 5.8

(ppm)

Major elements Trace elements

ClSample ID



 

  

(atoms g-1 rock a-1) (ka)

Mt. Velež

BU16-01 Budijevača, right lateral moraine 46.53 ± 1.54 41.8 9.9 ± 0.9 11.3 ± 1.1 14.1 ± 1.8 21.0 ± 5.0

BU16-02 Budijevača, right lateral moraine 34.46 ± 1.77 44.8 6.8 ± 0.6 7.1 ± 0.7 7.8 ± 0.9 9.0 ± 1.3

BU16-03 Budijevača, right lateral moraine 41.84 ± 1.39 44.0 8.4 ± 0.7 9.2 ± 0.9 10.9 ± 1.4 14.1 ± 2.3

BU16-04 Budijevača, right lateral moraine 35.17 ± 1.37 44.7 7.0 ± 0.6 7.7 ± 0.7 8.8 ± 1.1 10.9 ± 1.6

BU16-05 Budijevača, right lateral moraine 37.57 ± 1.17 45.7 7.3 ± 0.6 7.9 ± 0.7 9.0 ± 1.0 11.0 ± 1.8

BU16-06 Budijevača, left lateral moraine 58.24 ± 1.71 49.3 10.5 ± 0.9 12.2 ± 1.2 15.7 ± 2.1 27.5 ± 8.6

BU16-07 Budijevača, left lateral moraine 39.59 ± 1.32 46.0 7.6 ± 0.6 8.1 ± 0.7 9.0 ± 1.0 11.4 ± 1.8

BU16-08 Budijevača, left lateral moraine 28.09 ± 1.22 46.0 5.5 ± 0.5 5.8 ± 0.5 6.3 ± 0.6 7.0 ± 0.8

BU16-09 Budijevača, left lateral moraine 40.27 ± 1.36 43.9 8.1 ± 0.7 9.0 ± 0.9 10.7 ± 1.3 13.9 ± 2.2

BU16-10 Budijevača, left lateral moraine 42.79 ± 1.68 44.0 8.6 ± 0.8 9.6 ± 1.0 11.5 ± 1.4 15.3 ± 2.7

Mt. Crvanj

CR16-01 Crvanj, lateral above the lake 116.95 ± 3.61 75.8 12.0 ± 1.8 8.5 ± 1.4 8.2 ± 1.6 8.6 ± 2.1

CR16-02 Crvanj, lateral above the lake 52.69 ± 1.67 38.9 11.5 ± 1.4 9.2 ± 1.4 9.2 ± 1.6 10.2 ± 2.3

CR16-03 Crvanj, lateral above the lake 61.30 ± 9.51 78.7 6.1 ± 1.3 5.0 ± 1.0 4.2 ± 1.0 4.7 ± 1.0

CR16-04 Crvanj, lateral above the lake 97.27 ± 3.24 59.4 12.0 ± 1.7 8.7 ± 1.5 8.4 ± 1.5 8.9 ± 2.2

CR16-05 Crvanj, lateral above the lake 105.07 ± 3.69 57.8 15.6 ± 2.3 11.2 ± 1.8 11.3 ± 2.5 13.0 ± 4.1

CR16-06 Crvanj, lateral above the lake 92.05 ± 2.82 66.0 10.2 ± 1.6 7.4 ± 1.1 7.0 ± 1.2 7.1 ± 1.5

CR16-07 Crvanj, right lateral moraine 37.34 ± 1.37 51.4 6.4 ± 0.5 6.6 ± 0.6 7.0 ± 0.7 8.0 ± 1.0

CR16-08 Crvanj, right lateral moraine 59.78 ± 1.82 55.2 9.5 ± 1.1 8.3 ± 1.1 8.5 ± 1.4 9.4 ± 1.9

CR16-09 Crvanj, right lateral moraine 38.21 ± 1.31 48.4 7.0 ± 0.6 7.5 ± 0.6 8.3 ± 1.0 9.9 ± 1.5

CR16-10 Crvanj, right lateral moraine 60.16 ± 1.87 52.4 10.2 ± 0.8 11.0 ± 1.0 12.4 ± 1.6 16.5 ± 3.4

(ka)(ka)

erosion 

corrected       

(40 mm ka-1)

(ka)

15.7±2.1

11.3±2.5

12.4±1.6

14.1±1.8

Sample ID

S U R F A C E   E X P O S U R E   A G E S
Landform age 

calculated using 

erosion correction 

of 40 mm  ka-1 
Landform 36Cl (measured)

Contemporary 

depth average 

total production 

rate

erosion not 

corrected      

(0 mm ka-1)

(104 atoms g-1 rock) (ka)

erosion 

corrected      

(60 mm ka-1)

erosion 

corrected       

(20 mm ka-1)



    

Velež

Glacier 1 1287 (+ 40 / -20 )

Glacier 2 1271 (+ 40 / -20 )

Glacier 3 1216 (+ 30 / -10 )

Glacier 4 1284 (+ 30 / -20 )

Glacier 5 1265 (+ 30 / -20 )

Glacier 6 1327 (+ 20 / -20 )

Glacier 7 1393 (+ 30 / -10 )

Glacier 8 1724 (+ 10 / -10 )

Glacier 9 1728 (+ 10 / -10 )

Mean 1388

AABR 1.9±0.81

(σ 186)

Crvanj

Glacier 1 1468 (+ 60 / -30 )

Glacier 2 1577 (+ 30 / -20 )

Glacier 3 1541 (+ 40 / -20 )

Glacier 4 1553 (+ 20 / 0 )

Glacier 5 1607 (+ 20 / -10 )

Glacier 6 1500 (+ 50 / -30 )

Mean 1541

AABR 1.9±0.81

(σ 46)



 

 

Velež

Annual Range = 

18.9 ⁰C
150% Annual 

Range = 28.35 ⁰C

0 5.4 9304 11295

4 1.4 5601 7837

5 0.4 4807 7058

6 -0.6 4064 6313

7 -1.6 3371 5601

8 -2.6 2729 4923

9 -3.6 2140 4280

10 -4.6 1605 3671

11 -5.6 1128 3098

12 -6.6 714 2561

13 -7.6 372 2063

14 -8.6 115 1604

15 -9.6 0 1188

Crvanj

Annual Range = 

18.9 ⁰C
150% Annual 

Range = 28.35 ⁰C

0 4.4 8295 10378

4 0.4 4807 7058

5 -0.6 4064 6313

6 -1.6 3371 5601

7 -2.6 2729 4923

8 -3.6 2140 4280

9 -4.6 1605 3671

10 -5.6 1128 3098

11 -6.6 714 2561

12 -7.6 372 2063

13 -8.6 115 1604

14 -9.6 0 1188

15 -10.6 0 817

Annual melt (mm w.e.)

Annual melt (mm w.e.)

Mean annual 

temperature at 

ELA (⁰C)

Temperature 

depression  (⁰C)

Mean annual 

temperature at 

ELA (⁰C)

Temperature 

depression  (⁰C)



 

Mountain Dating method Age Erosion rate Number of samples Reference

Snežnik        
(Croatia)

14C LGM (*18.7 ±1.0 cal kyr BP) / 1 (animal bone in outwash fan) Marjanac et al., 2001

Pindus           

(Greece)
U-series

MIS 12 (>350 to 71 ka), MIS 6 (131.3 

to 80.5 ka)
/

28 from at least 11 landforms 

(calcite cement from moraines 

and alluvial deposits)

Hughes et al., 2006; 

Woodward et al., 2004

Šar Planina 
(FYROM)

10Be cosmogenic exposure 

dating

LGM (19.4 ± 3.2 to 12.4 ± 1.7 ka), 

Oldest Dryas (14.7 ± 2.1 ka) Younger 

Dryas (12.7 ± 1.9 ka)

10 mm/ka

8 from at least 6 landforms 

(moraine and rock glacier 

boulders)

Kuhlemann et al., 2009

Orjen 

(Montenegro)
U-series

MIS 12 (>350 to 324.0 ka), MIS 6 

(124.6 to 102.4 ka), MIS 5d-2 (17.3 to 

12.5 ka), Younger Dryas (9.6 to 8.0 

ka)

/
12 from 7 landforms (calcite 

cement from moraines)
Hughes et al., 2010

Central 

Montenegro
U-series

MIS 12 (>350 ka; 396.6 to 38.8 ka), 

MIS 8 or 10 (231.9 to 58.8 ka), MIS 6 

(120.2 to 88.1 ka) MIS 2 (13.4 ka), 

Younger Dryas (10.9 to 2.2 ka)

/
19 from 11 landforms (calcite 

cement from moraines)
Hughes et al., 2011

Velebit         

(Croatia)
U-series MIS 12-6 (>350 to 61.5 ka) /

 9 from at least 6 landforms 

(calcite cement from moraines, 

paleocaverns, former ice wedges)

Marjanac, 2012; 

Marjanac&Marjanac, 

2016

Rila            

(Bulgaria)

10Be cosmogenic exposure 

dating
LGM (23.5 to 14.4 ka) 0 mm/ka

10 from at least 6 landforms 

(moraine boulders)
Kuhlemann et al., 2013

Chelmos 

(Greece)

36Cl cosmogenic exposure 

dating

MIS 3 (39.9 ± 3.0 to 30.4 ± 2.2 ka), 

LGM (22.9 ±1.6 to 21.2 ± 1.6 ka), 

Younger Dryas (*CH10=12.6 ± 0.9, 

*CH11=10.2 ± 0.7 ka)

0 mm/ka
7 from 4 different landforms 

(moraine boulders)
Pope et al., 2015

Galičica         
(FYROM)

36Cl cosmogenic exposure 

dating

Younger Dryas (12.8 ± 1.4 to 11.3 ± 

1.3 ka)
5 mm/ka

5 from 1 landform (moraine 

boulders)
Gromig et al., 2018

Pelister           

(FYROM)

10Be cosmogenic exposure 

dating

Oldest Dryas (15.56 ± 0.85 to 15.03 ± 

0.85 ka)
0 mm/ka

3 from 1 landform (moraine 

boulders)
Ribolini et al., 2017

Olympus 

(Greece)

36Cl cosmogenic exposure 

dating

Lateglacial (3 phases: 15.5 ± 2.0 ka 

(*TZ03=16.35 ± 1.15 ka, *MK12=16.22 

± 1.13 ka), 13.5 ± 2.0 ka, 12.5 ± 1.5 

ka), Holocene (3 phases: 9.6 ± 1.1 

ka,  2.5 ± 0.3 ka, 0.64 ± 0.08ka)

5 mm/ka
20 from 11 landforms (moraine 

boulders, bedrock)
Styllas et al., 2018


