126 research outputs found

    Norsk rettspraksis 1984-1985

    Get PDF

    Quantitative analysis methods for studying fenestrations in liver sinusoidal endothelial cells. A comparative study

    Get PDF
    Liver Sinusoidal Endothelial Cells (LSEC) line the hepatic vasculature providing blood filtration via transmembrane nanopores called fenestrations. These structures are 50−300 nm in diameter, which is below the resolution limit of a conventional light microscopy. To date, there is no standardized method of fenestration image analysis. With this study, we provide and compare three different approaches: manual measurements, a semi-automatic (threshold-based) method, and an automatic method based on user-friendly open source machine learning software. Images were obtained using three super resolution techniques – atomic force microscopy (AFM), scanning electron microscopy (SEM), and structured illumination microscopy (SIM). Parameters describing fenestrations such as diameter, area, roundness, frequency, and porosity were measured. Finally, we studied the user bias by comparison of the data obtained by five different users applying provided analysis methods

    Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children

    Get PDF
    Background Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. Objectives We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). Methods This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. Results Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. Conclusion Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development

    Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children

    Get PDF
    BACKGROUND: Perfluoroalkyl substances (PFASs) are persistent organic pollutants that are suspected to be neurodevelopmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We investigated the associations between prenatal exposure to PFASs and symptoms of attention-deficit/hyperactivity disorder (ADHD) and cognitive functioning (language skills, estimated IQ and working memory) in preschool children, as well as effect modification by child sex. MATERIAL AND METHODS: This study included 944 mother-child pairs enrolled in a longitudinal prospective study of ADHD symptoms (the ADHD Study), with participants recruited from The Norwegian Mother, Father and Child Cohort Study (MoBa). Boys and girls aged three and a half years, participated in extensive clinical assessments using well-validated tools; The Preschool Age Psychiatric Assessment interview, Child Development Inventory and Stanford-Binet (5th revision). Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of gestation. Multivariable adjusted regression models were used to examine exposure-outcome associations with two principal components extracted from the seven detected PFASs. Based on these results, we performed regression analyses of individual PFASs categorized into quintiles. RESULTS: PFAS component 1 was mainly explained by perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA). PFAS component 2 was mainly explained by perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA). Regression models showed a negative association between PFAS component 1 and nonverbal working memory [β = -0.08 (CI: -0.12, -0.03)] and a positive association between PFAS component 2 and verbal working memory [β = 0.07 (CI: 0.01, 0.12)]. There were no associations with ADHD symptoms, language skills or IQ. For verbal working memory and PFAS component 2, we found evidence for effect modification by child sex, with associations only for boys. The results of quintile models with individual PFASs, showed the same pattern for working memory as the results in the component regression analyses. There were negative associations between nonverbal working memory and quintiles of PFOA, PFNA, PFHxS, PFHpS and PFOS and positive associations between verbal working memory and quintiles of PFOA, PFNA, PFDA and PFUnDA, with significant relationships mainly in the highest concentration groups. CONCLUSIONS: Based on our results, we did not find consistent evidence to conclude that prenatal exposure to PFASs are associated with ADHD symptoms or cognitive dysfunctions in preschool children aged three and a half years, which is in line with the majority of studies in this area. Our results showed some associations between PFASs and working memory, particularly negative relationships with nonverbal working memory, but also positive relationships with verbal working memory. The relationships were weak, as well as both positive and negative, which suggest no clear association - and need for replication.This research was funded by the Research Council of Norway (MILJØFORSK, project no. 267984/E50 “NeuroTox”), National Institutes of Health (NIH) R01ES021777, and National Institute of Environmental Health Sciences (NIEHS) P30 ES010126. The ADHD Study, from which the present data were drawn, was supported by funds and grants from the Norwegian Ministry of Health, the Norwegian Health Directorate, the South-Eastern Health Region, G&PJ Sorensen Fund for Scientific Research, and from the Norwegian Resource Centre for ADHD, Tourette syndrome and Narcolepsy. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH, and National Institute of Neurological Disorders and Stroke (NINDS) (grant no.1 UO1 NS 047537-01 and grant no.2 UO1 NS 047537-06A1). We are grateful to all the participating families in Norway who take part in this on-going cohort study, and to the staff of the ADHD Study.publishedVersio

    Cognitive functioning in a group of adolescents at risk for psychosis.

    Full text link
    peer reviewedCognitive deficits are a core feature of schizophrenia, and impairments are present in groups at-risk for psychosis. Most at-risk studies include young adults and not younger age-groups, such as adolescents. Participants are usually help-seeking individuals, even though risk factors may also be present in non-help seeking adolescents. We aim to explore cognitive functions in a group of non-help-seeking 15-year-old adolescents at risk for psychosis compared to age- and gender matched controls, including particular focus on specific cognitive domains. Hundred participants (mean age = 15.3) were invited after completing the 14-year-old survey distributed by the Norwegian Mother-, Father- and Child Study. At-risk adolescents were selected based on high scores on 19 items assessing both psychotic experiences and anomalous self-experiences. Matched controls were selected from the same sample. Cognitive functioning was assessed using the MATRICS Consensus Cognitive Battery and IQ using Wechsler's Abbreviated Test of Intelligence. We found that the adolescents at-risk for psychosis had significantly poorer scores than controls on the composite score of the MCCB. IQ scores were also significantly lower in the at-risk group. The results highlight general cognitive deficits as central in a group of non-help-seeking adolescents at-risk for psychosis. Results indicate that the development of cognitive impairments starts early in life in at-risk groups. It is still unclear whether specific cognitive domains, such as verbal learning, are related to psychotic symptoms or may be specifically vulnerable to symptoms of depression and anxiety

    Secretogranin II; a Protein Increased in the Myocardium and Circulation in Heart Failure with Cardioprotective Properties

    Get PDF
    Background: Several beneficial effects have been demonstrated for secretogranin II (SgII) in non-cardiac tissue. As cardiac production of chromogranin A and B, two related proteins, is increased in heart failure (HF), we hypothesized that SgII could play a role in cardiovascular pathophysiology. Methodology/Principal Findings: SgII production was characterized in a post-myocardial infarction heart failure (HF) mouse model, functional properties explored in experimental models, and circulating levels measured in mice and patients with stable HF of moderate severity. SgII mRNA levels were 10.5 fold upregulated in the left ventricle (LV) of animals with myocardial infarction and HF (p<0.001 vs. sham-operated animals). SgII protein levels were also increased in the LV, but not in other organs investigated. SgII was produced in several cell types in the myocardium and cardiomyocyte synthesis of SgII was potently induced by transforming growth factor-beta and norepinephrine stimulation in vitro. Processing of SgII to shorter peptides was enhanced in the failing myocardium due to increased levels of the proteases PC1/3 and PC2 and circulating SgII levels were increased in mice with HF. Examining a pathophysiological role of SgII in the initial phase of post-infarction HF, the SgII fragment secretoneurin reduced myocardial ischemia-reperfusion injury and cardiomyocyte apoptosis by 30% and rapidly increased cardiomyocyte Erk1/2 and Stat3 phosphorylation. SgII levels were also higher in patients with stable, chronic HF compared to age-and gender-matched control subjects: median 0.16 (Q1-3 0.14-0.18) vs. 0.12 (0.10-0.14) nmol/L, p<0.001. Conclusions: We demonstrate increased myocardial SgII production and processing in the LV in animals with myocardial infarction and HF, which could be beneficial as the SgII fragment secretoneurin protects from ischemia-reperfusion injury and cardiomyocyte apoptosis. Circulating SgII levels are also increased in patients with chronic, stable HF and may represent a new cardiac biomarker

    Exogenous Visual Orienting Is Associated with Specific Neurotransmitter Genetic Markers: A Population-Based Genetic Association Study

    Get PDF
    Background: Currently, there is a sense that the spatial orienting of attention is related to genotypic variations in cholinergic genes but not to variations in dopaminergic genes. However, reexamination of associations with both cholinergic and dopaminergic genes is warranted because previous studies used endogenous rather than exogenous cues and costs and benefits were not analyzed separately. Examining costs (increases in response time following an invalid precue) and benefits (decreases in response time following a valid pre-cue) separately could be important if dopaminergic genes (implicated in disorders such as attention deficit disorder) independently influence the different processes of orienting (e.g., disengage, move, engage). Methodology/Principal Findings: We tested normal subjects (N = 161) between 18 and 61 years. Participants completed a computer task in which pre-cues preceded the presence of a target. Subjects responded (with a key press) to the location of the target (right versus left of fixation). The cues could be valid (i.e., appear where the target would appear) or invalid (appear contralateral to where the target would appear). DNA sequencing assays were performed on buccal cells to genotype known genetic markers and these were examined for association with task scores. Here we show significant associations between visual orienting and genetic markers (on COMT, DAT1, and APOE; R 2 s from 4 % to 9%). Conclusions/Significance: One measure in particular – the response time cost of a single dim, invalid cue – was associate

    Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV) dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2) is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease.</p> <p>Methods</p> <p>Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation.</p> <p>Results</p> <p>Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3). Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR). Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3). There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p < 0.001). Patients with reduced RV function had higher plasma CCN2 levels than those with normal or mildly reduced RV function (p < 0.001). Plasma CCN2 ≥ 77 μg/L was an independent predictor of reduced RV function (odds ratio 15.36 [95% CI 4.15;56.86]) and had 88% sensitivity and 69% specificity for its detection (p < 0.001). Plasma CCN2 was elevated in patients with mild or greater TR/PR compared to those with no or minimal TR/PR (p = 0.008), with the highest levels seen in moderate to severe TR/PR (p = 0.03).</p> <p>Conclusions</p> <p>Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.</p
    corecore