6,900 research outputs found

    Jet substructure as a new Higgs search channel at the LHC

    Get PDF
    It is widely considered that, for Higgs boson searches at the Large Hadron Collider, WH and ZH production where the Higgs boson decays to b anti-b are poor search channels due to large backgrounds. We show that at high transverse momenta, employing state-of-the-art jet reconstruction and decomposition techniques, these processes can be recovered as promising search channels for the standard model Higgs boson around 120 GeV in mass.Comment: 4 pages, 3 figure

    Squark anti-squark pair production at the LHC: the electroweak contribution

    Full text link
    We present the complete NLO electroweak contribution of O(αs2α)\mathcal{O}(\alpha^2_s \alpha) to the production of diagonal squark--anti-squark pairs in proton--proton collisions. Compared to the lowest-order O(αsα+α2)\mathcal{O}(\alpha_s\alpha + \alpha^2) electroweak terms, the NLO contributions are also significant. We discuss the LO and NLO electroweak effects in cross sections and distributions at the LHC for the production of squarks different from top squarks, in various supersymmetric benchmark scenarios.Comment: 38 pages, 21 figures. Replaced with the version published in JHE

    Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels

    Get PDF
    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance

    Two-dimensional model of dynamical fermion mass generation in strongly coupled gauge theories

    Get PDF
    We generalize the NF=2N_F=2 Schwinger model on the lattice by adding a charged scalar field. In this so-called χUϕ2\chi U\phi_2 model the scalar field shields the fermion charge, and a neutral fermion, acquiring mass dynamically, is present in the spectrum. We study numerically the mass of this fermion at various large fixed values of the gauge coupling by varying the effective four-fermion coupling, and find an indication that its scaling behavior is the same as that of the fermion mass in the chiral Gross-Neveu model. This suggests that the χUϕ2\chi U\phi_2 model is in the same universality class as the Gross-Neveu model, and thus renormalizable and asymptotic free at arbitrary strong gauge coupling.Comment: 18 pages, LaTeX2e, requires packages rotating.sty and curves.sty from CTA

    Higgs boson pair production process e+eZHHe^+e^-\to ZHH in the littlest Higgs model at the ILC

    Full text link
    The physics prospect at future linear e+ee^{+}e^{-} colliders for the study of the Higgs triple self-coupling via the process of e+eZHHe^{+}e^{-}\to ZHH is investigated. In this paper, we calculate the contribution of the new particles predicted by the littlest Higgs model to the cross sections of this process in the future high energy e+ee^{+}e^{-} collider(ILCILC). The results show that, in the favorable parameter spaces preferred by the electroweak precision, the deviation of the total cross sections from its SMSM value varies from a few percent to tens percent, which may be detected at the future ILCILC experiments with s\sqrt{s}=500GeV.Comment: 13 pages,4 figure

    On the Whitehead spectrum of the circle

    Full text link
    The seminal work of Waldhausen, Farrell and Jones, Igusa, and Weiss and Williams shows that the homotopy groups in low degrees of the space of homeomorphisms of a closed Riemannian manifold of negative sectional curvature can be expressed as a functor of the fundamental group of the manifold. To determine this functor, however, it remains to determine the homotopy groups of the topological Whitehead spectrum of the circle. The cyclotomic trace of B okstedt, Hsiang, and Madsen and a theorem of Dundas, in turn, lead to an expression for these homotopy groups in terms of the equivariant homotopy groups of the homotopy fiber of the map from the topological Hochschild T-spectrum of the sphere spectrum to that of the ring of integers induced by the Hurewicz map. We evaluate the latter homotopy groups, and hence, the homotopy groups of the topological Whitehead spectrum of the circle in low degrees. The result extends earlier work by Anderson and Hsiang and by Igusa and complements recent work by Grunewald, Klein, and Macko.Comment: 52 page

    Numerical Study of Length Spectra and Low-lying Eigenvalue Spectra of Compact Hyperbolic 3-manifolds

    Full text link
    In this paper, we numerically investigate the length spectra and the low-lying eigenvalue spectra of the Laplace-Beltrami operator for a large number of small compact(closed) hyperbolic (CH) 3-manifolds. The first non-zero eigenvalues have been successfully computed using the periodic orbit sum method, which are compared with various geometric quantities such as volume, diameter and length of the shortest periodic geodesic of the manifolds. The deviation of low-lying eigenvalue spectra of manifolds converging to a cusped hyperbolic manifold from the asymptotic distribution has been measured by ζ\zeta- function and spectral distance.Comment: 19 pages, 18 EPS figures and 2 GIF figures (fig.10) Description of cusped manifolds in section 2 is correcte

    Finitely presented wreath products and double coset decompositions

    Get PDF
    We characterize which permutational wreath products W^(X)\rtimes G are finitely presented. This occurs if and only if G and W are finitely presented, G acts on X with finitely generated stabilizers, and with finitely many orbits on the cartesian square X^2. On the one hand, this extends a result of G. Baumslag about standard wreath products; on the other hand, this provides nontrivial examples of finitely presented groups. For instance, we obtain two quasi-isometric finitely presented groups, one of which is torsion-free and the other has an infinite torsion subgroup. Motivated by the characterization above, we discuss the following question: which finitely generated groups can have a finitely generated subgroup with finitely many double cosets? The discussion involves properties related to the structure of maximal subgroups, and to the profinite topology.Comment: 21 pages; no figure. To appear in Geom. Dedicat

    (±)-2-exo- and endo-Methylamino-1,2,3,4-tetrahydro-1,4-ethanonapthalene Hydrochloride

    Get PDF
    This is the published version
    corecore