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Abstract We characterize which permutational wreath products G � W (X) are finitely pre-
sented. This occurs if and only if G and W are finitely presented, G acts on X with finitely
generated stabilizers, and with finitely many orbits on the cartesian square X2. On the one
hand, this extends a result of G. Baumslag about infinite presentation of standard wreath
products; on the other hand, this provides nontrivial examples of finitely presented groups.
For instance, we obtain two quasi-isometric finitely presented groups, one of which is tor-
sion-free and the other has an infinite torsion subgroup. Motivated by the characterization
above, we discuss the following question: which finitely generated groups can have a finitely
generated subgroup with finitely many double cosets? The discussion involves properties
related to the structure of maximal subgroups, and to the profinite topology.
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1 Introduction

Let G be a group, and X a G-set. Let W be another group. Then G acts on the direct sum
W (X) by permutations of factors. The (permutational) wreath product W �X G is defined to
be the semidirect product W (X)

� G. When the action of G on X is simply transitive, it is
called the standard wreath product (this special case is sometimes called the wreath product)
and denoted by W � G.

By a result of Baumslag [2], a standard wreath product W � G with W �= {1} and G infi-
nite is never finitely presented. In contrast, permutational wreath products provide nontrivial
examples:

Y. de Cornulier (B)
École Polytechnique Fédérale de Lausanne (EPFL), Institut de Géométrie, Algèbre et Topologie (IGAT),
1015 Lausanne, Switzerland
e-mail: decornul@clipper.ens.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/159145245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


90 Geom Dedicata (2006) 122:89–108

Theorem 1.1 If W �= {1}, the wreath product W �X G is finitely presented if and only if the
following conditions are satisfied

(i) W and G are finitely presented,
(ii) G acts on X with finitely generated stabilizers, and

(iii) the product action of G on the Cartesian square X2 has finitely many orbits.

Note that this result extends Baumslag’s result: indeed, if G acts simply transitively on
X , then (iii) implies that X is finite.

We indicate (see Examples 3.4, 3.5, 3.6) groups G with an infinite G-set X satisfying the
hypotheses of Theorem 1.1, which thus provides new examples of finitely presented groups.
For instance, it allows to prove the existence of two quasi-isometric finitely presented groups,
one of which is torsion-free and the other has an infinite torsion subgroup (see Proposition
2.12).

A general question, motived by Theorem 1.1, is: what are pairs (G, X) satisfying the
hypotheses of Theorem 1.1? Trivial examples are pairs (G, X) where G is finitely presented
and X a finite G-set, thus we focus on nontrivial cases, namely those for which X is infinite.

Section 3 is devoted to discuss obstructions, for a given group G, to the existence of an
infinite G-set X satisfying (ii) and (iii) of Theorem 1.1, respectively satisfying (iii). It is, in
the major part, written as a survey, including many examples. For instance, if G is a finitely
generated linear solvable group, there exists no infinite G-set satisfying (iii) of Theorem 1.1;
while if G is a free group, there exists an infinite G-set satisfying (iii) of Theorem 1.1, but
none can satisfy both (ii) and (iii).

2 Finitely presented wreath products

2.1 Proof of Theorem 1.1

For completeness, we first recall the following easy result.

Proposition 2.1 If X �= ∅ and W �= {1}, the wreath product W �X G is finitely generated if
and only if G and W are finitely generated, and G has a finite number of orbits on X.

Proof If the conditions are satisfied, and if n denotes the number of G-orbits in X , then
W �X G can be written as a quotient of the free product W ∗n ∗ G, where W ∗n denotes the
free product of n copies of W .

Conversely, suppose that W �X G is finitely generated. Being a quotient of W �X G, G is
also finitely generated. Since X is nonempty, W embeds in W �X G, hence is countable. If
W is not finitely generated, it can be written as the union of a strictly increasing sequence of
subgroups Wn . Therefore W �X G is the union of the strictly increasing sequence of subgroups
Wn �X G, and hence is not finitely generated. Finally, if X has infinitely many G-orbits, it can
be written as the union of a strictly increasing sequence (Xn) of G-invariant subsets. So G is
the union of the strictly increasing sequence of subgroups W �Xn G (using that W �= {1}). ��

Let us now look at a presentation for the wreath product W �X G. For the sake of simplicity,
we first suppose that G acts transitively on X , so that we can write X = G/H . It is easy to
check that a presentation for W �G/H G is given by

〈G, W, | [H, W ] , [W, gWg−1] ∀g ∈ G − H 〉. � (2.1)

� This concise notation must be understood as: W �G/H G is the quotient of the free product G ∗ W by the
given relations.
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Using the relation [H, W ]={1}, it is immediate that, in the family of relations [W, gWg−1]
with g ∈ G − H , it suffices to take into account those g in G/H − {H}. In fact, we can do
better: we can consider only those g in H\G/H − {H}: this is obtained by conjugating the
relation [W, gWg−1] by an element of H . With these remarks, we can prove:

Theorem 2.2 Let G, W be finitely presented groups. Let G act on a set X, with finitely
generated stabilizers. Suppose that the product action of G on X2 has a finite number of
orbits. Then W �X G is finitely presented.

Proof We begin by the case when G is transitive on X , so that we can write X = G/H . Since
W and H are finitely generated, [H, W ] = {1} in the presentation (2.1) reduces to a finite
number of relators. The hypothesis that the product action of G on X2 has a finite number of
orbits reads as: H\G/H is finite. Then the result follows from the remarks above: the family
of relations [W, gWg−1] of the presentation (2.1) reduces to the finite family [W, gi Wg−1

i ],
where (gi ) is a finite system of representants of the double classes modulo H in G, except
the class {H}.

We now indicate how to deal with the case when G is not necessarily transitive on X , which
makes no essential difference. Choosing a point in each orbit, we can write X = ∐

i∈I G/Hi ,
where I = G\X . For all i ∈ I , consider a copy Wi of W . Then it is easy to check that a
presentation for W �α G is given by the quotient of the free product of G and all Wi by the
relations:

[Hi , Wi ] (i ∈ I ), [Wi , gWi g−1] (i ∈ I, g ∈ G − Hi ),

[Wi , gW j g−1] (i, j ∈ I, i �= j, g ∈ G).

If we forget for a few seconds the two latter families of relations, we get the generalized
free product with amalgamation G ∗(Hi ) (Hi × Wi ). Given that I is finite, that G and W are
finitely presented, and that all Hi are finitely generated, this free product with amalgamation
is clearly finitely presented.

Choose R ⊂ G such that, for every i, j ∈ I , every double coset Hi gHj is equal to Hi g′ Hj

for some g′ ∈ R. Then the last two families of relations follow from their subfamilies when
g ranges over R. On the other hand, the G-action on X2 having a finite number of orbits is
equivalent to saying that all double quotients Hi\G/Hj are finite, so that R can be chosen
finite. Thus, since W is finitely generated, these reduce to finitely many relations. ��

We are now going to show that the converse of Theorem 2.2 is true. We need some
elementary preliminaries on graph products.

Let � be a graph, that is, a set �0 = X , whose elements are called vertices, along with
a subset �1 of subsets of cardinality two of �0, called edges. For each i ∈ �0, let Wi be a
group. Following [13], the graph product P = (Wi )

〈�〉
i∈X of all Wi is by definition the quotient

of the free product of all Wi by the relations [Wi , W j ] = {1} if {i, j} ∈ �1. Denote by σi the
obvious morphism Wi → P . Observe that if � is the totally disconnected graph, then P is
the free product of all Wi , and if � is the complete graph, then � is the direct sum (sometimes
called the restricted direct product) of all Wi . When all Wi are equal to a single group W ; we
denote the graph product by W 〈�〉.

Lemma 2.3

(1) For all i , σi : Wi → P is injective.
(2) If {i, j} /∈ �1, the natural morphism σi ∗ σ j → P is injective.
(3) If {i, j} ∈ �1, the natural morphism σi × σ j → P is injective.
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(4) If {i, k} /∈ �1 and { j, k} /∈ �1, the natural morphism Wi ∗ W j ∗ Wk → P, or (Wi ×
W j ) ∗ Wk → P (according as whether {i, j} belongs to �1) is injective.

Proof It suffices to observe that all these morphisms are split, as we see by taking the quotient
of P by the normal subgroup generated by all W� for � �= i (resp. for � �= i, j) (resp. for
� �= i, j, k). ��

Lemma 2.3 has the following consequence. Let �′ be another graph structure on the same
set of vertices: �′0 = �0 = X . Suppose in addition that �′1 ⊇ �1. There is a natural mor-
phism p from P = (Wi )

〈�〉
i∈X to P ′ = (Wi )

〈�′〉
i∈X , which is obviously surjective. Lemma 2.3(2)

yields:

Lemma 2.4 Suppose that Wi �= {1} for all i ∈ X. Then the morphism p is bijective if and
only if �′1 = �1.

Proof Suppose that p is bijective. Let {i, j} be an edge in �1. Then [Wi , W j ] = {1} in P . By
injectivity, we get that [Wi , W j ] = {1} in P ′. Since Wi �= {1} and W j �= {1}, we obtain that
Wi and W j cannot generate their free product in P ′, so that, by Lemma 2.3(2), {i, j} ∈ �′1.
The converse is clear. ��

Now denote by Q the kernel of the natural morphism P = (Wi )
〈�〉
i∈X → ⊕

i∈X Wi . We
want to show that Q often contains a free nonabelian group. Assume, from now on, that
Wi �= {1} for all i . It already follows from Lemma 2.4 that if � is not the complete graph,
then Q �= {1}. Now denote by �op the complement graph; namely, �0

op = �0 = X , and, for

all i �= j ∈ X , {i, j} ∈ �1
op if and only if {i, j} /∈ �1. Note that a decomposition of � (resp.

�op) into connected components corresponds to a decomposition of P into a free product
(resp. a direct sum).

Lemma 2.5 Suppose that Wi �= {1} for all i . The following are equivalent.

(i) Q does not contain any nonabelian free subgroup.
(ii) All connected components of �op have at most 2 elements, and whenever {i, j} is a

2-element connected component of �op, then Wi and W j are isomorphic to C2, the
cyclic group on two elements.

Proof Suppose that (i) holds. Let J be the union of 1-element connected components of
�op, and K ⊂ X − J a subset intersecting each 2-element connected component of �op

in exactly one element. Then Q can be identified to the kernel of the natural morphism
D∞(K ) → (C2 ×C2)

(K ), where D∞ � C2 ∗C2 denotes the infinite dihedral group, and thus
Q is abelian (isomorphic to Z(K )) and cannot contains free subgroups.

Conversely, suppose that (ii) is satisfied.
(a) Suppose that there exists a connected component of �op with at least 2 elements, and with
at least one element i such that Wi is not cyclic on two elements. Pick j such that {i, j} ∈ �1

op.
The following fact is immediate.

Fact 2.6 Let G be a group with at least three elements. Then it has a subgroup isomorphic
to either Z, C p (the cyclic group of prime odd order p), C4, or C2 × C2.

Pick any nontrivial cyclic subgroup Z j in W j , and any subgroup Zi of Wi as in Fact 2.6.
By Lemma 2.3, there is a natural embedding of Zi ∗ Z j into P , which is mapped to the
abelian group Zi × Z j in

⊕
i∈X Wi . Since Zi ∗ Z j contains a nonabelian free subgroup,
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so does its derived subgroup which is contained in Q, so that Q contains a nonabelian free
subgroup.
(b) Otherwise, suppose that there exists a connected component of �op with at least 3 ele-
ments. Take i, j, k ∈ X , distinct, such that {i, k} and { j, k} belong to �1

op. We can suppose
that Wi , W j , Wk are cyclic on two elements, otherwise we can argue as in (a). By Lemma
2.3, we get an embedding of (C2 × C2) ∗ C2 or C2 ∗ C2 ∗ C2 into P , mapping to the
abelian subgroup C2 × C2 × C2 in

⊕
i∈X Wi . As in a), since both (C2 × C2) ∗ C2 and

C2 ∗C2 ∗C2 contain nonabelian free subgroups, we obtain that Q contains a nonabelian free
subgroup. ��

When � is the totally disconnected graph, Lemma 2.5 reduces as:

Lemma 2.7 Let (Wi )i∈X be a family of nontrivial groups, and let Q be the kernel of the
natural morphism from the free product of all Wi to the direct sum of all Wi . Suppose that X
has at least 2 elements, and, if all Wi are cyclic on 2 elements, that X has at least 3 elements.
Then Q contains a non-abelian free subgroup. ��
Lemma 2.8 Let X be a set, and �n an increasing family of graph structures on X : that
is, �0

n = X , and �1
n ⊆ �1

n+1 for all n. Suppose that X can be written as a finite disjoint

union X = ∐k
i=1 Xi such that, for all n, the complement graph (�n)op can be written as a

disjoint union of subgraphs �n,i , with �0
n,i = Xi and �n,i has constant finite degree. Then

the sequence (�n) is eventually constant.

Proof Let dn,i denote the degree of �n,i . The sequence (
∑k

i=1 dn,i )n∈N decreases, hence is
eventually constant. Thus eventually, all sequences (dn,i )n∈N are constant. Observe that if
dn,i = dn+1,i , then �n,i = �n+1,i . Accordingly, the sequence (�n) is eventually constant.

��

Now suppose that all Wi are equal to a single group W �= {1}, and suppose that a group
G acts on �, i.e., acts on �0 = X preserving �1. Then the semidirect product W 〈�〉

� G is
well-defined.

We have to describe, given a G-set, what are the graph structures preserved by G. Let
X be a set. Define an edge set on X to be a subset of X × X which is symmetric and does
not intersect the diagonal; an edge set obviously defines a structure of graph on X . Suppose
now that X is a G-set. Decompose X into its G-orbits: X = ∐

Xi (i ∈ I ), and choose some
base-point xi in each Xi so that we can write Xi = G/Hi .

Lemma 2.9 If E is a G-invariant edge set on X , and if (i, j) ∈ I 2, define Bi j = Bi j (E) =
{g ∈ G, (xi , gx j ) ∈ E}. Then the subsets Bi j ⊂ G satisfy: for all i, j ∈ I , B−1

i j = B ji ,
Hi Bi j = Bi j , Hi ∩ Bii = ∅.

Conversely, for every family (Vi j )i, j∈I of subsets of G satisfying these three conditions,
there exists a unique G-invariant edge set E such that Vi j = Bi j (E) for all i, j ∈ I , given
by (gxi , g′x j ) ∈ E if and only if g−1g′ ∈ Vi j .

Proof All verifications are straightforward. ��
We can now prove the converse of Theorem 2.2. It is essentially contained in the following

slightly stronger result:

Proposition 2.10 Let G, W be groups, and X a G-set with finitely many orbits. Suppose
that W �= {1}, X �= ∅, and that one of the following conditions is satisfied.
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(1) The group G has infinitely many orbits on X2.
(2) For some x ∈ X , the stabilizer Gx is not finitely generated.

Then, for every finitely presented group mapping onto W �X G, the kernel contains a nonab-
elian free subgroup. In particular, W �X G is not finitely presented.

Proof We keep the notation introduced above: X = ∐
G/Hi .

Suppose that (1) is satisfied. Then, for some k, �, Hk\G/H� is infinite. Define, for i, j ∈ I ,
n ∈ N, subsets V n

i j of G as follows.
If k �= �, take a strictly increasing sequence (Un) of finite subsets of Hk\G/H� whose

union is all of Hk\G/H�. Define V n
k� = Un , V n

�k = U−1
n .

If k = �, take a strictly increasing sequence (Un) of finite subsets of Hk\G/Hk − {Hk}
which are symmetric under inversion, so that the union of all Un is all of Hk\G/Hk − {Hk}.
Define V n

kk = Un .
In both cases, for all i, j such that {i, j} �= {k, �}, define V n

i j to be all of Hi\G/Hj if
i �= j , and Hi\G/Hi − {Hi } if i = j .

Let En be the G-invariant edge set on X corresponding, by Lemma 2.9, to the family
(V n

i j )i, j∈I , and denote by Xn the corresponding graph. Observe that (En) is a strictly increas-

ing sequence of G-invariant edge sets whose union is the full edge set E∞ = X2 − diag(X).
Hence, the sequence of surjective morphisms between finitely generated groups W 〈Xn〉

�G →
W 〈Xn+1〉

� G converges to W 〈X∞〉
� G = W (X)

� G. This already proves that W (X)
� G

is not finitely presented: more precisely, if a finitely presented group maps onto W (X)
� G,

then the map factors through W 〈Xn〉
� G for some n.

Now, if the kernel of W 〈Xn〉 → W (X) does not contain a nonabelian free subgroup, then,
by Lemma 2.5, the complement graph of Xn has all its vertices of degree at most 1. Since
this degree is constant on every G-orbit of X , the hypotheses of Lemma 2.8 are satisfied, and
thus the sequence of graphs (Xn) stabilizes, a contradiction. Therefore, for all n, the kernel
of W 〈Xn〉

� G → W (X)
� G does not contain any nonabelian free subgroup. Since, for every

finitely presented group mapping onto W �X G, the map must factor through W 〈Xn〉
� G for

some n, we obtain the desired conclusion.
Suppose that (2) is satisfied: fix i such that Hi is not finitely generated. Write Hi as a strictly

increasing union of subgroups Hi,n . Define Xn as the disjoint union
∐

j �=i G/Hj � G/Hi,n ,
and endow it with the edge set defined as: x ∼ y unless x = y or x, y ∈ G/Hi,n and x ∈ y Hi .
Let Q be the kernel of the natural map W 〈Xn〉 → W (X). It coincides with the kernel of the
natural map from the graph product W 〈G/Hi,n〉 to W (G/Hi ), and hence contains the kernel of
the natural map from the free product W ∗Hi /Hi,n to W . Noting that Hi,n has infinite index
in Hi , by Lemma 2.7, Q contains a nonabelian free subgroup. Accordingly, the kernel of
W 〈Xn〉

� G → W (X)
� G also contains a nonabelian free subgroup for all n, and since

W 〈Xn〉
� G is a sequence of finitely generated groups converging to W �X G, we can conclude

as we did for (1): if a finitely presented group maps onto W (X)
� G, then the map factors

through W 〈Xn〉
� G for some n. ��

Theorem 2.11 Let G, W be groups. Let G act on a nonempty set X. Suppose that W �X G
is finitely presented. Then G and W are finitely presented, and, if W �= {1}, then the action
of G on X has finitely generated stabilizers, and the product action of G on X2 has a finite
number of orbits.

Proof By Proposition 2.1, G and W are finitely generated, and G has finitely many orbits
on X .
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Now observe that G is finitely presented, since it is obtained from W �X G = W (X)
� G by

killing a finite generating subset of W I ⊂ W (X), where I ⊂ X is a finite set which contains
one point in each orbit.

Suppose now that W is not finitely presented. Then there is a sequence of noninjective
surjective morphisms Wn → Wn+1 between finitely generated groups, whose limit is W .
Then, the sequence of noninjective surjective morphisms between finitely generated groups:
Wn �X G → Wn+1 �X G converges to W �X G, contradicting that W �X G is finitely presented.
Now Proposition 2.10 allows us to conclude. ��
2.2 Applications

Our main application consists in proving that the property of being torsion-free is not weakly
geometric among finitely presented groups. The examples of [10] are standard wreath prod-
ucts, so are infinitely presented.

Let F be the Thompson group of the dyadic interval (see Example 3.4), and F1/2 the sta-
bilizer of 1/2. The homogeneous space F/F1/2 can be identified with the set I of all dyadic
numbers contained in the interval (0, 1), and the action of F is transitive on ordered pairs
(a, b), a < b, that is, F1/2 has exactly three cosets in T .

Proposition 2.12 The finitely presented groups Z �I F and D∞ �I F are bi-Lipschitz-
equivalent. The first is torsion-free, while the second contains an infinite subgroup of
exponent 2.

Proof The finite presentation follows from Theorem 2.2. The second assertion reduces, by
Proposition 4.2, to the fact that Z and D∞ are bi-Lipschitz-equivalent. The last assertion is
clear. ��

Let S be any nonabelian simple, finitely presented group (possibly finite). Let G be a
finitely presented group, with an infinite index, finitely generated subgroup H , such that
H\G/H is finite, and such that the action of G on G/H is faithful.

Set � = S �G/H G. This group has the following properties:

Proposition 2.13 (1) � is finitely presented.
(2) Any nontrivial normal subgroup of � contains N = S(G/H).

Proof (1) follows from Theorem 2.2.
(2) Since the action of G on N is purely outer (that is, the morphism G → Out(N ) is

injective), every nontrivial normal subgroup of G intersects nontrivially N . On the other
hand, any normal subgroup N ′ intersecting nontrivially N contains it: let us recall the stan-
dard argument. For x ∈ G/H and s ∈ S, denote by δx (s) the function X → S sending x
to s and every y �= x to 1. If (sx )x∈G/H be a nontrivial element in N ′ ∩ N , then, taking the
commutator with a suitable δx (s), we obtain that N ′ contains δx (t) for some x ∈ G/H and
some 1 �= t ∈ S. Such an element clearly generates N as a normal subgroup. ��

Note that the normal subgroup lattice structure of � is obtained from that of G by adding
a point “at the bottom”.

An example of a direct application of Proposition 2.10 is the following well-known result,
initially proved in [33].

Corollary 2.14 The free d-solvable group Rd,n on n generators (d, n ≥ 2) is not finitely
presented.
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Proof It suffices to observe that if A is a finitely presented group which maps onto Rd,n , then
A contains a free subgroup of rank two. Indeed, Rd,n maps onto Z � Z, while every finitely
presented group mapping onto Z � Z must contain a free subgroup by Proposition 2.10. ��

3 Subgroups of finite biindex and related properties

3.1 Definitions and examples

Theorems 2.2 and 2.11 raise the following question: which finitely presented groups G have
an infinite index finitely generated subgroup H such that G acts on (G/H)2 with a finite
number of orbits? It is also natural to ask the same question without assuming H finitely
generated. These questions seem to have never been systematically investigated, but related
properties give useful information for our purposes; for instance subgroup separability, which
has been extensively studied for other motivations, such as the generalized word problem.
Hence, the purpose of the following definitions is to present various obstructions for a group
G to have an almost 2-transitive action on an infinite set.

Definition 3.1 Define a pair of groups as a pair (G, H), where G is a group and H a sub-
group.

We say that a pair is finitely presented if G is finitely presented and H is finitely generated.
We say H has finite biindex in G if H\G/H is finite. We also say that the pair (G, H) is

almost 2-transitive; this is equivalent to say that G has finitely many orbits on (G/H)2.
We say H is almost maximal in G if there are only finitely many subgroups of G containing

H . We also say that the pair (G, H) is almost primitive.
We say that a subgroup H of G has finite proindex if the profinite closure of H in G (that

is, the intersection of all finite index subgroups of G containing H ) has finite index in G.

Lemma 3.2 For pairs (G, H), we have the implications: (H has finite index) ⇒ (H has
finite biindex) ⇒ (H is almost maximal) ⇒ (H has finite proindex).

Proof The first one is trivial. For the second one, suppose that H has finite biindex m. Every
subgroup containing H is an union of double cosets of H ; accordingly the number of possible
subgroups is bounded by 2m . For the third implication, observe that if a group has profinite
closure of infinite index, this profinite closure must be the intersection of infinitely many
finite index subgroups. ��
Remark 3.3 None of these implications is an equivalence, even when G is finitely presented.

• For examples of infinite index subgroups of finite biindex, see Examples 3.4, 3.5, and 3.6
below.

• If G �= {1} has no proper subgroup of finite index (for instance, G is infinite and simple),
then {1} has finite proindex in G, but is not almost maximal.

• Recall that, for a group G and a subgroup H , the pair (G, H) is called a Hecke pair if,
for all g ∈ G, gHg−1 and H are commensurable, i.e., they have a common finite index
subgroup; equivalently this means that the orbits of H in G/H are finite. On the other
hand, H having finite biindex means that there are finitely many such orbits. Thus if
(G, H) is a Hecke pair and H has infinite index, then H has infinite biindex. Now it is
known that, for any prime p, (SL2(Z[1/p]), SL2(Z)) is a Hecke pair, and that SL2(Z) is
a maximal subgroup of infinite index in SL2(Z[1/p]), hence also has infinite biindex.
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I only know a restricted sample of faithful almost 2-transitive finitely presented pairs.

Example 3.4 Let G be the Thompson group F . This is the group of piecewise linear increas-
ing homeomorphisms of [0, 1] with singularities in Z[1/2] ∩ [0, 1] and slopes powers of 2.
This group is finitely presented and torsion-free, does not contain any nonabelian free sub-
group, and has simple derived subgroup (see [8]). The group F acts on [0, 1]∩Z[1/2], fixing
0 and 1, and acting transitively on pairs (a, b) ∈ Z[1/2] satisfying 0 < a < b < 1. The
stabilizer F1/2 of 1/2 is easily seen to be isomorphic to F × F . So the pair (F, F1/2) is almost
2-transitive and finitely presented.

Example 3.5 Let G be the Thompson group T (see [8]) of the circle, which is finitely
presented and simple. This is the group of piecewise linear oriented homeomorphisms of
the circle R/Z with singularities in Z[1/2]/Z and slopes powers of 2. The stabilizer H
of 0 = 1 ∈ R/Z is isomorphic to the Thomposon group F of Example 3.4. Then T acts
two-transitively on T/F = Z[1/2]/Z.

Example 3.6 (Houghton groups) Fix an integer n ≥ 1. Let N denote the non-negative inte-
gers, and set �n = N×{1, . . . , n}. We think at �n as the disjoint union of n copies N1, . . . , Nn

of N. Let Gn be the group of all permutations σ of �n such that, for all i , σ(Ni )	Ni is finite,
and σ is eventually a translation on Ni .

When n = 1, G1 is the group of permutations with finite support of N1, while Gn is
finitely generated if n ≥ 2 and finitely presented if n ≥ 3 (see [7]; Brown attributes the
finite presentation when n = 3 to R. Burns and D. Solitar; the finite generation is due to
Houghton). For an explicit presentation when n = 3, see [19].

Note that, for n ≥ 2, the derived (resp. second derived) subgroup of G coincides with the
group of permutations (resp. even permutations) with finite support of �n . In particular, the
action of Gn on �n is k-transitive for all k.

On the other hand, as an extension of Zn−1 by a locally finite group, Gn is elementary
amenable (but not virtually solvable). The stabilizer Hn of a point is isomorphic to Gn ; in
particular, it is finitely generated for n ≥ 2.

Example 3.7 In [32], a 3-manifold group � together with an infinite index surface subgroup
� are exhibited; it is proved in [23] that �\�/� is finite. (I do not know if the �-action on
�/� is faithful.)

Example 3.8 A refinement by D. Wise [35] of a construction of Rips shows that, for every
finitely presented group Q, there exists a finitely presented, residually finite, torsion-free,
C ′(1/6) small cancellation group G and a surjective map p : G → Q, such that Ker(p) is a
finitely generated subgroup of G.

Accordingly, if K is a finitely generated subgroup of finite biindex and infinite index in
Q, then p−1(K ) is a finitely generated subgroup of finite biindex and infinite index in Q.

Thus, starting from any of the above examples, we obtains examples of almost 2-transitive
finitely presented pairs (G, H) with G/H infinite and G residually finite, torsion-free, word
hyperbolic, satisfying the C ′(1/6) small cancellation property.

3.2 Related definitions

We first introduce some obstructions to the existence of a infinite index subgroup of finite
biindex.

Definition 3.9 We say that a group G has Property (PF) [respectively (MF), resp. (BF)] if
every finite proindex (resp. almost maximal, resp. finite biindex) subgroup H has finite index.



98 Geom Dedicata (2006) 122:89–108

We also recall that a group is (ERF) if every subgroup is closed for the profinite topology
(ERF stands for “Extended Residually Finite”).

As a consequence of Lemma 3.2, we have the following implications.

E RF �� P F �� M F �� B F

Note that these properties are inherited by quotients. Note also that Properties ERF and
PF are invariant by commensurability, and that Property ERF is also inherited by subgroups.
We show below (Proposition 3.14) that, for finitely generated groups, Properties (PF) and
(MF) are equivalent.

Example 3.10 (1) The Thompson group of Example 3.4 is 2-generated and does not have
Property (BF). In particular, nonabelian free groups do not have Property (BF).

(2) In [22], it is proved that a finitely generated group which is linear over a commutative
ring, and not virtually solvable, has a maximal subgroup of infinite index, thus does not
have Property (MF).

(3) By a result of Olshanskii [25], any non-elementary word hyperbolic group has an infi-
nite quotient with no proper subgroup of finite index. In particular, it has a maximal
subgroup of infinite index, hence does not satisfy Property (MF).

(4) Hall [18] has exhibited finitely generated 3-solvable groups with infinite index maximal
subgroups, hence without Property (MF).

(5) If G is a virtually solvable group which is not virtually polycyclic, then it is proved in
[1] that G has a subgroup H conjugate to a proper subgroup of itself. In particular, G
is not ERF.

(6) A virtually polycyclic group is ERF (Malcev [21]). It is not known if there are other
examples of finitely generated ERF groups.

(7) We prove (Proposition 3.20) that if a finitely generated group � is an extension with vir-
tually polycyclic quotient and nilpotent kernel, then � has Property (MF). In particular,
this holds when � is a linear virtually solvable group.

(8) The first Grigorchuk group � has Property (PF) (Pervova [28], Grigorchuk and Wilson
[16]). It is not ERF: indeed, it has a subgroup isomorphic to a direct sum

⊕
n≥1 C2n , thus

mapping onto the quasi-cyclic group C2∞ which is not residually finite. Accordingly,
� has a subgroup which is not ERF, hence � is neither ERF. On the other hand, it is an
open question to find a group of subexponential growth which does not have Property
(PF); equivalently to find a group of subexponential growth with a maximal subgroup
of infinite index.

We now introduce similar obstructions to the existence of a finitely generated infinite
index subgroup of finite biindex.

Definition 3.11 We say that a group G has Property (LPF) [respectively (LMF), resp. (LBF)]
if every finite proindex (resp. almost maximal, resp. finite biindex) finitely generated sub-
group H has finite index.

We also recall that a group is LERF if every finitely generated subgroup is closed for the
profinite topology. (LERF is also called “subgroup separable”). In these four abbreviations,
the additional letter L stands for “locally”.

Again as a consequence of Lemma 3.2, we have the following implications.

E RF

��

�� P F

��

�� M F

��

�� B F

��
L E RF �� L P F �� L M F �� L B F
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Note that the properties in the second row are no longer inherited by quotients: indeed,
free groups are LERF (see the example below) but do not have Property BF (see Example
3.10). Note also that Properties LERF and LPF are invariant by commensurability, and that
Property LERF is also inherited by subgroups.

In the literature, a group is defined to have the engulfing Property if every proper finitely
generated subgroup is contained in a proper finite index subgroup. Clearly, a group has
Property (LPF) if and only if all its finite index subgroups have the engulfing Property.

Example 3.12 (1) A free nonabelian group is LERF [17].
(2) The first Grigorchuk group � is LERF (Pervova [28], Grigorchuk and Wilson [16]). On

the other hand, non-residually finite groups of subexponential growth appear in [11].
(3) If G is the Baumslag-Solitar group BS(1, p) (|p| ≥ 2), then G is not LERF, since its

subgroup Z[1/p] is not LERF (its quotient by a cyclic subgroup is divisible). If G is a
standard wreath product A � Z, with A finitely generated abelian, then G is LERF but
not ERF (Proposition 3.19).

(4) In [23], an example of a free-by-cyclic 3-manifold group which fails to satisfy Property
(LPF) is given.

(5) If � ⊂ PSL2(C) is a lattice, then � has Property (LMF). More precisely, for every
finitely generated subgroup of infinite index � ⊂ �, there exists a strictly decreas-
ing sequence of subgroups � ⊂ �n ⊂ �. All this follows from the proof of [15,
Theorem 1.3]. On the other hand, it is not known if � is always LERF, or even has
(LPF).

(6) Example 3.8, and the bare existence of finitely generated groups without Property
(LBF) (Examples 3.4, 3.5, 3.6) imply the existence of torsion-free word hyperbolic
groups without Property (LBF).

3.3 Nearly maximal subgroups

Recall [29] that a subgroup H of a group G is nearly maximal if H is maximal among infinite
index subgroups of G. A standard verification shows that every infinite index subgroup of a
finitely generated group G is contained in a nearly maximal subgroup.

Observation 3.13 If H is a nearly maximal subgroup of a group G, then either H is closed
or has finite proindex in G.

This obvious result has the following consequence. Suppose that a finitely generated group
does not have Property (PF). Let H be an infinite index subgroup with finite proindex. Then
H is contained in a nearly maximal subgroup M . Clearly, M has also finite proindex. So the
only subgroups containing M are those which contain M , and there are finitely many, so that
M is almost maximal. This proves:

Proposition 3.14 Let G be a finitely generated group. The following are equivalent.

(i) G has Property (PF).
(ii) Every nearly maximal subgroup of G is profinitely closed.

(iii) G has Property (MF).

Remark 3.15 (1) On the other hand, it is not clear whether Property (LMF) implies Property
(LPF). I actually conjecture that it is not true. A possible counterexample could be a free
product G ∗ G, where G is any nontrivial finitely generated group without any nontrivial
finite quotient, but I do not know how to prove Property (LMF) for such a group. Note also
that although SLn(Z) (n ≥ 3) is known not to have Property (LPF) [34], whether it has
Property (LMF) is open (by [22] it does not have Property (MF)).
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(2) Note that the (infinitely generated) quasi-cyclic group C p∞ = Z[1/p]/Z is (PF) but
not (MF).

A consequence of Proposition 3.14 is that, for finitely generated groups, Property (MF)
is a commensurability invariant. I do not know if this it is true for Property (LMF); however,
we have:

Proposition 3.16 Property (LMF) is inherited by subgroups of finite index.

Lemma 3.17 Let G be a group without Property (LMF). Then G has a finitely generated
nearly maximal subgroup which is almost maximal.

Proof Let H0 be a finitely generated, almost maximal subgroup of infinite index. If H0 is
not nearly maximal, it is properly contained in a subgroup K1 of infinite index; define H1 as
the subgroup generated by H0 and one element in K0 − H0. Go on defining an increasing
sequence of finitely generated subgroups of infinite index. This processus stops, since H is
almost maximal. So, for some n, Hn is nearly maximal, and, since it contains H0, it is almost
maximal. ��
Proof of Proposition 3.16 Note that an infinitely generated group necessarily has Property
(LMF). Let G be a finitely generated group, and H a subgroup of finite index. Suppose that
H does not have Property (LMF). By Lemma 3.17, let M be a finitely generated, nearly max-
imal, almost maximal subgroup of H . Then M is contained in a nearly maximal subgroup
M ′ of G. Since M ′ has infinite index in G and H has finite index in G, the subgroup M ′ ∩ H
has infinite index in H , so that M ′ ∩ H = M . In particular, M has finite index in M ′, so that
M ′ is also finitely generated.

It is clear that M ′ is not profinitely closed in G: otherwise, so would be M = M ′ ∩ H ,
and M would also be closed in H . ��
3.4 Finitely generated solvable groups

Lemma 3.18 Let G be a finitely generated group which has a surjective morphism p onto
an abelian group A, with abelian kernel K . Let H be a subgroup of G such that p(H) = A.
Then H is closed for the profinite topology.

Proof The assumption implies that H ∩ K is normal in G. Maybe replacing G by G/

(H ∩ K ), we can suppose that H ∩ K = {1}, so that G = H � K . To see that H is closed
for the profinite topology, it clearly suffices to show that its profinite closure has trivial
intersection with K . Thus, let k ∈ K − {1} belong to the profinite closure of H .

Since G is finitely generated and metabelian, it is residually finite [18]. So, there exists a
finite index subgroup L of K , normal in G, such that k /∈ L . Then H � L contains H , has
finite index in G, and does not contain k. This is a contradiction. ��

Proposition 3.19 Let G be a standard wreath product A �Z, with A �= {1} finitely generated
abelian. Then G is LERF, but not ERF.

Proof (1) It is not ERF because the subgroup A(N) of A(Z)
� Z is not closed for the profinite

topology, since it is conjugate to a proper subgroup of itself.
(2) Let H be a finitely generated subgroup of G. Let us show that H is closed for the

profinite topology.
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First case: H is not contained in A(Z). Then the projection of H in Z is a subgroup nZ of
Z (n ≥ 1). It clearly suffices to show that H is closed in A(Z)

� nZ, and this is a consequence
of Lemma 3.18.

Second case: H is contained in A(Z). Clearly, A(Z) is closed in the profinite topology.
Therefore we have to consider h ∈ A(Z) − H and show that h is not contained in the profinite
closure of H . Take a finite subset F of Z containing all supports of h and generators of H . Let
n be greater than the diameter of F . Replacing G by its finite index subgroup A(Z)

� Z, we
can suppose that H and h are contained in A0, where A(Z) = ⊕

i∈Z Ai . Then h is a nontrivial
element in the abelianization of the quotient of G by the normal subgroup generated by H .
In particular, h does not belong to the profinite closure of H . ��

Example 3.12(4) indicates that it is not obvious how to generalize Proposition 3.19. It
would be interesting to characterize LERF groups among finitely generated solvable groups;
even in the case of metabelian groups this is open.

Here is now a result about Property (MF) for a class of finitely generated solvable groups.

Proposition 3.20 Let G be group, which is nilpotent-by-(virtually polycyclic), i.e., lies in a
extension with nilpotent kernel and virtually polycyclic quotient. Then G has Property (MF).

Note that every finitely generated, virtually solvable group which is linear over a field is
nilpotent-by-(virtually abelian), hence belongs to this class. In particular, this encompasses
a result of Margulis and Soifer (the easier implication in [22, Main Theorem]). The main
ingredient to prove Proposition 3.20 is the following deep result:

Theorem 3.21 (Roseblade [31]) Let H be a virtually polycyclic group, and let M be a simple
ZH-module. Then M is finite.

Proof of Proposition 3.20 Let G be a finitely generated group, N a nilpotent, normal sub-
group, such that G/N is virtually polycyclic.

Suppose by contradiction that G does not have Property (MF). Passing to a subgroup of
finite index if necessary, we can suppose that G has a maximal subgroup M of infinite index.
We can suppose that M contains no nontrivial normal subgroup of G. The centre Z(N ) of
N is normal in G. Since M does not contain any nontrivial normal subgroup, M does not
contain Z(N ). By maximality, M Z(N ) = G. Thus, since M ∩ Z(N ) is normalized by both
M and Z(N ), it is a normal subgroup of G contained in M , hence is trivial. Accordingly, G
is the semidirect product of M by Z(N ). Since M is a maximal subgroup, Z(N ) is a simple
M-module, and actually a simple M/(M ∩ N )-module since N acts trivially on its centre.
Since M/(M ∩ N ) is a subgroup of G/N , it is virtually polycyclic, so that by Theorem 3.21,
Z(N ) is finite. Hence M has finite index in G, contradiction. ��
Remark 3.22 P. Hall has constructed [18] a 3-solvable group G with a maximal, finitely
generated subgroup of infinite index. In particular, G does not have Property (LMF), so that
“nilpotent-by-polycyclic" cannot be replaced by “3-solvable" in Proposition 3.20.

I do not know if there exists a finitely generated solvable group without Property (BF).
However, using standard arguments, we have the following result.

Proposition 3.23 The following are equivalent.

(1) There exists a finitely generated n-solvable group without Property (BF).
(2) There exists a finitely generated n-solvable group without Property (LBF).
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(3) There exists a finitely generated (n − 1)-solvable group �, and an infinite �-module V ,
such that the action of � on V has finitely many orbits.

Proof (2) ⇒ (1) is trivial.
(3) ⇒ (2). Observe that � is a finitely generated subgroup of finite biindex in � � V .
Suppose (1). Let G be a finitely generated solvable group, and M a subgroup of finite

biindex and infinite index. Replacing M by a larger subgroup if necessary, we can suppose
it nearly maximal, and replacing G by the profinite closure of M if necessary, we can sup-
pose M maximal. Moreover, taking the quotient by a normal subgroup if necessary, we can
suppose the only normal subgroup of G contained in M is {1}, i.e., G acts faithfully on G/M .

Let A be the last nontrivial term of the derived series of G. Then A is a normal subgroup
and A �= {1}, so that A is not contained in M . Accordingly, M A = G. Observe that M ∩ A
is normalized both by M (since A is normal) and by A (since A is abelian). It follows that
M ∩ A is normal in G; therefore M ∩ A = {1}, and G � M � A. Since M has finite biindex
in G, M acts with finitely many orbits on A. ��

For n ≥ 3, we leave as open whether the equivalent statements of Proposition 3.23 are
true. For n ≤ 2, they are false as a consequence of Proposition 3.20. We record this in the
following:

Question 3.24 (1) Does there exist a finitely generated, solvable group without Property
(LBF)?

(2) Does there exist a finitely presented solvable group without Property (LBF)?
(3) Does there exist a finitely presented solvable group without Property (MF)?

The existence of a finitely generated solvable group without Property (LBF) would permit
to construct solvable finitely presented wreath products, and would imply, arguing as in Prop-
osition 2.12, that the class of virtually solvable groups is not invariant under quasi-isometries
within the class of finitely presented groups.

3.5 Amalgams and obstructions to Property ((L)BF)

The following theorem is due to M. Hall in the case of free groups, P. Scott in the case of
surface groups, and to Brunner, Burns, and Solitar [4] for the general case.

Theorem 3.25 Let G be the amalgam of two free groups over a cyclic subgroup. Then G is
LERF.

In contrast, Burger and Mozes [5] have constructed amalgams of two free groups over
a finite index subgroup which are finitely presented simple groups. I do not know if these
groups have Property (LMF). These examples indicate that amalgams may have very differ-
ent behaviours, so that it seems that no general statement can be made. The following result
is a particular case of Theorem 2 in [20].

Theorem 3.26 (Karrass, Solitar (1973)) Let G be a finitely generated group which splits as
a nontrivial amalgam over a finite subgroup. Then G has Property (LBF).

Example 3.27 Let G be an infinite group, all of whose subgroups are either finite or of
finite index. Then G clearly has Property (BF). If, moreover, G has no proper subgroup
of finite index, then G has a maximal subgroup which is finite; in particular G does not
have Property (LMF). There exist nontrivial examples of such groups: infinite two-generator
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groups all of whose nontrivial proper subgroups are isomorphic to Z/pZ, p a big prime, have
been constructed by Olshanskii (see [24]). All known examples of such groups are infinitely
presented.

3.6 Fibre products

Let G1, G2, Q be groups and pi : Gi → Q a surjection for i = 1, 2. We are interested in
the pair (G, H), where G = G1 × G2 and H is the fibre product G1 ×Q G2 = {(x, y) ∈
G1 × G2, p1(g1) = p2(g2)}.

Proposition 3.28 (1) There is a natural order-preserving bijection between the set of sub-
groups of G1 × G2 containing H = G1 ×Q G2 and the set of normal subgroups of Q. It
induces a bijection between finite index normal subgroups of Q and finite index subgroups
of G1 × G2 containing G1 ×Q G2.

(2) Suppose that G1 and G2 are finitely generated. If Q is finitely presented, then G1×Q G2

is finitely generated. Conversely, if G1 and G2 are in addition finitely presented and if
G1 ×Q G2 is finitely generated, then Q is finitely presented.

Proof (1) If K is a subgroup of G1×G2 containing H = G1×Q G2, then set u(K ) = p1(K ∩
(G1 ×{1})). This is a normal subgroup of Q, because K ∩ (G1 ×{1}) is normal in G1 (iden-
tified with G1 ×{1}). Indeed, let x belong to K ∩ (G1 ×{1}). This means that (x, 1) ∈ K . Fix
y ∈ G1 and let us check that yxy−1 ∈ K ∩ (G1 ×{1}), i.e., (yxy−1, 1) ∈ K . Choose a ∈ G2

such that p2(a) = p1(y). Then (y, a) ∈ H ⊆ K , so that (yxy−1, 1) = (y, a)(x, 1)(y, a)−1

also belongs to K .
If N is a normal subgroup of Q, set v(Q) = G1 ×Q/N G2. This is a subgroup of G1 × G2

containing H . We claim that u and v are inverse bijections (clearly, they preserve the order).

• K ⊆ v(u(K )): Let (x, y) belong to K . Write p2(y) = p1(a) for some a ∈ G1, so
that (a, y) ∈ H ⊆ K . Then (xa−1, 1) = (x, y)(a, y)−1 ∈ K . Thus p1(xa−1) =
p1(x)p2(y)−1 ∈ u(K ). This means that (x, y) ∈ G1 ×Q/u(K ) G2 = v(u(K )).

• v(u(K )) ⊆ K : Let (x, y) belong to v(u(K ). This means that p1(x)p2(y)−1 ∈ u(K ), i.e.,
p1(x)p2(y)−1 = p1(a) for some a ∈ G1 such that (a, 1) ∈ K . Therefore (xa−1, y) ∈
H ⊆ K , so that (x, y) = (xa−1, y)(a, 1) ∈ K .

• N ⊆ u(v(N )): Let α belong to N . Write α = p1(x) for some x ∈ X . Then (x, 1) ∈
G1 ×Q/N G1 = v(N ), so that α ∈ u(v(N )).

• u(v(N )) ⊆ N : Let α belong to u(v(N )). This means that α = p1(x), for some x ∈ G1

such that (x, 1) ∈ G1 ×Q/N G2, so that p1(x) = α ∈ N .

(2) Suppose that G1 and G2 are finitely generated, and Q is finitely presented. For i = 1, 2,
write Ni = Ker(pi ). Since Q is finitely presented and Gi finitely generated, Ni is gener-
ated as a normal subgroup in Gi by a finite subset Ri . Besides, take a finite subset S of
H = G1 ×Q G2 such that pi (S) generates Q for i = 1, 2. Then (R1 ×{1})∪ ({1}× R2)∪ S
is a finite generating subset for a subgroup M of H . We claim that M = H . Let (x, y)

belong to H . The hypothesis on S implies that there exists z ∈ G2 and a ∈ N1 such
that (ax, z) ∈ M . Since (ax, z) ∈ M ⊆ H , p1(x) = p2(z), so that z−1 y ∈ N2. Hence
(x, y) = (a, 1)−1(ax, z)(1, z−1 y). We claim that (a, 1) ∈ M . Indeed, a ∈ N1, and, using
that p1(S)generates G1 and R1 generates N1 as a normal subgroup, we obtain that (a, 1) ∈ M .
Similarly, (1, z−1 y) ∈ M , and therefore (x, y) ∈ M .

Conversely, suppose that G1 and G2 are finitely presented and suppose that H is finitely
generated. There exists a finitely presented group Q′, a surjective map q : Q′ → Q, surjective
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maps qi : Gi → Q′, i = 1, 2, such that pi = q ◦ qi for i = 1, 2. If Q is not finitely pre-
sented, then the kernel of q can be written as a union of an increasing sequence of subgroups
Mn , normal in Q′. By (1), the normal subgroups intermediate between Ker(q1) and Ker(p1)

correspond bijectively with the subgroups intermediate between G1 ×Q′ G2 and G1 ×Q G2.
Accordingly, the latter is not finitely generated. ��
Corollary 3.29 Let G1, G2 be finitely generated groups. The subgroup G1 ×Q G2 has finite
proindex (resp. is almost maximal) in G1 × G2 if and only if Q has a minimal finite index
subgroup (resp. Q has a finite number of normal subgroups).

Remark 3.30 The question of finite presentability of a fibre product G1 ×Q G2 is not trivial
at all. It is easy to show that G1 and G2, and Q must necessarily be finitely presented, but the
converse is not true. For instance, take the Baumslag-Solitar group BS(1, p) = Z�p Z[1/p]
with p ≥ 2, which has presentation 〈x, y | x y = y p〉. There are two morphisms p+, p− of
this group onto Z. This gives, up to isomorphism, two possible fiber products over Z, which
we denote by BS(1, p) ×Z++ BS(1, p) and BS(1, p) ×Z+− BS(1, p). Then the former
is finitely presented, while the second is not. The first has presentation 〈x, y, z | [y, z] =
1, x y = y p, x z = z p〉, while the second has a finitely generated central extension by
Z[1/p], given by the semidirect product of the diagonal subgroup of SL2(Z[1/p]) by the
Heisenberg group H3(Z[1/p]), hence is not finitely presented. For more about the finite
presentation of fibre products, see [3, 6, 14].

Proposition 3.31 The subgroup H = G1 ×Q G2 is has finite biindex in G1 × G2 if and only
if Q has a finite number of conjugacy classes.

Proof It suffices to check that every double coset of H contains an element of G1 ×{1}, and
that two elements (x, 1) and (y, 1) of G1 × {1} are in the same double coset if and only if
the images of x and y in Q are conjugate. ��
Remark 3.32 Examples of infinite, finitely generated groups with finitely many conjugacy
classes have been constructed by S. Ivanov (see [24, Theorem 41.2]), and examples with
exactly one nontrivial conjugacy class have recently been announced by Osin [26]. But it
is an open question to find infinite finitely presented groups with finitely many conjugacy
classes.

3.7 Hereditary properties

Lemma 3.33 If N is normal in G, then the following statements are equivalent: (i) N is
almost maximal, (ii) N has finite index.

Proof It suffices to show (i) ⇒ (ii), which is equivalent to the statement: every infinite group
has infinitely many subgroups. If G/N is torsion, then it is the union of its finite subgroups, so
they are infinitely many. Otherwise, G/N contains an infinite cyclic subgroup, which contains
infinitely many subgroups. ��
Lemma 3.34 Suppose H1, H2 are subgroups of G, H1 ⊂ H2. Suppose that H1 has finite
biindex (resp. is almost maximal) in G. Then H2 has finite biindex (resp. is almost maximal)
in G and H1 has finite biindex (resp. is almost maximal) in H2.

Proof The statement for with “almost maximal” is trivial.
Suppose that H1 has finite biindex in G. Trivially, so has H2. Write G = ⋃

i∈I H1gi H1,
with I finite, and set J = {i ∈ I, gi ∈ H2}. Then H2 = ⋃

i∈J H1gi H1, so that H1 has finite
biindex in G. ��
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Lemma 3.35 Suppose H1, H2 are subgroups of G, H1 is contained as a subgroup of finite
index in H2, and H2 has finite biindex in G. Then H1 has finite biindex in G.

Proof Write G = ⋃
i H2gi H2, H2 = ⋃

j h j H1 = ⋃
k H1h′

k , all these unions being finite.
Then G = ⋃

i, j,k H1h′
k gi h j H1. ��

Remark 3.36 The converse of Lemma 3.34 is false in both cases.
In the case of finite biindex, consider G = SL(2, K ), where K is an algebraically closed

field, T is the subgroup of upper triangular matrices in G, and D denotes the diagonal matri-
ces in G. Then G is two-transitive on G/T � P1(K ), and T is two-transitive on T/D � K ,
the affine line. But, by a dimension argument, the action of D on G/D cannot have a finite
number of orbits. On the other hand, I do not know any counterexample with G finitely
generated.

For a counterexample with almost maximal subgroups, which also shows that the ana-
logue of Lemma 3.35 is false with almost maximal subgroups, take an infinite group G with
a finite maximal subgroup H . Such groups are constructed in [24]. So H is almost maximal
in G and {1} has finite index in H . But, by Lemma 3.33 {1} is not almost maximal in G.

Remark 3.37 Here is a trivial consequence of Lemma 3.34. Let G1 be a group, G2 is a finite
index subgroup of G1, and H a subgroup of G2. Then, if H has finite biindex (resp. is almost
maximal) in G2, it has also finite biindex (resp. is almost maximal) in G1. The point is that
I do not know, in both cases, if the converse is true.

Lemma 3.38 Suppose that, for i = 1, 2, Hi has finite biindex (resp. is almost maximal) in
Gi . Then H1 × H2 has finite biindex (resp. is almost maximal) in G1 × G2.

Proof This is obvious with finite biindex. Suppose that, for i = 1, 2, Hi is almost maximal
in Gi . If there are infinitely many subgroups containing H1 × H2, infinitely many have the
same intersection Ki and projection Pi on Gi for i = 1, 2. Note that Ki is normal in Pi .
Since, as a consequence of Lemma 3.34, Ki is almost maximal in Pi , this implies, by Lemma
3.33, that Pi/Ki is finite for i = 1, 2. Since only finitely many subgroups can exist between
K1 × K2 and P1 × P2, we have a contradiction. ��
Lemma 3.39 If H has finite biindex (resp. is almost maximal) in G and N is a normal
subgroup of G, then H/(H ∩ N ) has finite biindex (resp. is almost maximal) in G/N.

Proof For the case of finite biindex, pass the expression G = ⋃n
i=1 Hgi H to the quotient.

The statement for almost maximal subgroups is trivial. ��
Proposition 3.40 Properties (BF) and (LBF) are inherited from finite index subgroups.

Proof Let G be a group and N a finite index subgroup. Suppose that N is (L)BF. Let H
be a (finitely generated) almost maximal subgroup in G. By Lemma 3.35, H ∩ N has finite
biindex in G (and is also finitely generated), so has finite biindex in N by Lemma 3.34. Since
N has Property (L)BF, H ∩ N has finite index in N , so that H has finite index in G. ��

I do not know if Properties (BF) and (LBF) are inherited by finite index subgroups. This
motivates the following question.

Question 3.41 Let G be a group, N a subgroup of finite index, and H a subgroup of N . If
H has finite biindex in N , must it have finite biindex in G?
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3.8 Faithful almost 2-transitive pairs

We could define weaker analogs of Properties (PF) through (LBF), say ( f P F), etc., by only
considering subgroups H such that the action of G on G/H is faithful.

Not much is known about these properties for infinite groups. Dixon [9] has shown that, in
a suitable sense, a generic subgroup on n ≥ 2 generators of the symmetric group Sym(N) is
free and 2-transitive, showing that free groups also have faithful 2-transitive actions on infi-
nite sets and therefore do not have Property (fBF). The non-existence of a faithful primitive
action, which is, for infinite groups, a priori slightly stronger than Property (fMF), is widely
investigated in [12].

Examples 3.4, 3.5, and 3.6 provide essentially the only examples of finitely presented
groups which I know not to have Property (fLBF). In the finitely generated case, we also
have the groups G × G when the infinite group G has finitely many conjugacy classes, and
has trivial center (this latter assumption is always satisfied modulo a finite normal subgroup).
Note that, in all these examples, G has very few normal subgroups: for F and the Houghton
groups, G has simple derived subgroup; T is itself simple, and the groups with finitely many
conjugacy classes have finitely many normal subgroups. We therefore ask:

Question 3.42 Does there exist a residually finite group that acts almost 2-transitively and
faithfully on an infinite set, with finitely generated stabilizers?

The answer is yes when “almost 2-transitively” is replaced by “primitively", as shows the
example, pointed out in [12], of the action of PSL2(Z[1/p]) on PSL2(Z[1/p])/PSL2(Z).

Appendix A. Length of words in wreath products

We consider the wreath product A = W �G/H G, where W and G are finitely generated.
We write W additively although it is not necessarily abelian. We write the elements of
A: ( f, c), where f ∈ W (G/H) and c ∈ G; we denote by x0 the base-point of G/H . If
w ∈ W and c ∈ G, by the abusive notation (w, c), we mean (δx0(w), c), where δx0 is the
natural inclusion of W into the x0-component of W (G/H). The product in A is given by
( f1, c1)( f2, c2) = ( f1 + c1 f2, c1c2). Fix a symmetric finite generating subset S of G. We
call a path of length n in G a sequence (g0, . . . , gn) such that g0 = 1 and gi+1g−1

i ∈ S for all
i = 0, . . . , n − 1. For any finite subset F of X and c ∈ G, let K (F, c) be the minimal length
of a path (g0, . . . , gn) in G such that gn = c and F ⊂ {g0x0, . . . , gn x0}. On the other hand,
fix a finite symmetric generating subset T of W , and denote by | · | the corresponding word
length. For f ∈ W (X), set | f | = ∑

x∈X | f (x)|. Fix, as generating subset of A, the union of
(t, 1) for t ∈ T and (0, s) for s ∈ S. Denote again by | · | the word length in A. The following
lemma is obtained in [27] in the case of standard wreath products.

Lemma A.1 For f ∈ W (G/H) and c ∈ G, we have |( f, c)| = K (supp( f ), c) + | f |.

Proof Set n = K (supp( f ), c). Let 1 = g0, g1, . . . , gn be a path of length n such that gn = c
and, whenever x ∈ supp( f ), x = gi x0 for some i . For all i , set gi+1 = si gi with si ∈ S, and
xi = gi x0. Then

( f, c) = ( f (x0), s1)( f (x1), s2) · · · ( f (xn−1), sn)( f (xn), 1)

= ( f (x0), 1)(0, s1)( f (x1), 1)(0, s2) · · · ( f (xn−1), 1)(0, sn).
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Thus, ( f, c) can be expressed as a product of K (supp( f ), c)+| f | generators. Accordingly,
for all ( f, c), |( f, c)| ≤ K (supp( f ), c) + | f |.

Conversely suppose that ( f, c) can be expressed as a product of a minimal number n of
generators. Putting generators of Wx0 together, we get

( f, c) = (w1, 1)(0, s1)(w2, 1)(0, s2) · · · (wm, 1)(0, sm)(wm+1, 1)

= (w1, s1) · · · (wm, sm)(wm+1, 1)

with each wi ∈ W , si ∈ S. Set gi = ∏i
j=1 si .

Then (g0, g1, . . . , gm) is a path joining 1 to gm = c. Besides, f = w1 + g1w2 + · · · +
gmwm+1, so that supp( f ) is contained in {g0x0, g1x0, . . . , gm−1x0, gm x0}. Accordingly,
K (supp( f ), c) ≤ m, and n = ∑

i |wi | + m ≥ | f | + K (supp( f ), c). ��
This immediately implies the following result, first observed by A. Erschler-Dyubina [10]

in the case of standard wreath products.

Proposition A.2 Let G be a group, H a subgroup, and W1, W2 two bi-Lipschitz-equivalent
groups. Then W1 �G/H G and W2 �G/H G are bi-Lipschitz-equivalent.
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