6,325 research outputs found

    Chiral Green's Functions in Superconformal Field Theory

    Get PDF
    By solving the Ward identities in a superconformal field theory we find the unique three-point Green's functions composed of chiral superfields for N = 1,2,3,4 supersymmetry. We show that the N=1 four-point function with R-charge equal to one is uniquely determined by the Ward identities up to the specification of four constants. We discuss why chiral Green's functions above three-points, with total R-charge greater than N, are not uniquely determined.Comment: 32 pages, no figures, LaTeX2e forma

    Biochemical diagnosis of ventricular dysfunction in elderly patients in general practice: observational study

    Get PDF
    Objective: To investigate the usefulness of measuring plasma concentrations of B type natriuretic peptide in the diagnosis of left ventricular systolic dysfunction in an unselected group of elderly people. Design: Observational study. Setting: General practice with four centres in Poole, Dorset. Participants: 155 elderly patients aged 70 to 84 years. Main outcome measures: Diagnostic characteristics of plasma B type natriuretic peptide measured by radioimmunoassay as a test for left ventricular systolic dysfunction assessed by echocardiography. Results: The median plasma concentration of B type natriuretic peptide was 39.3 pmol/l in patients with left ventricular systolic dysfunction and 15.8 pmol/l in those with normal function. The proportional area under the receiver operator curve was 0.85. At a cut-off point of 18.7 pmol/l the test sensitivity was 92% and the predictive value 18%. Conclusions: Plasma concentration of B type natriuretic peptide could be used effectively as an initial test in a community screening programme and, possibly, using a low cut-off point, as a means of ruling out left ventricular systolic dysfunction. It is, however, not a good test to “rule in” the diagnosis, and access to echocardiography remains essential for general practitioners to diagnose heart failure early

    Acoustic behavior of melon-headed whales varies on a diel cycle.

    Get PDF
    Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances

    Observations of ozone production in a dissipating tropical convective cell during TC4

    Get PDF
    From 13 July–9 August 2007, 25 ozonesondes were launched from Las Tablas, Panama as part of the Tropical Composition, Cloud, and Climate Coupling (TC4) mission. On 5 August, a strong convective cell formed in the Gulf of Panama. World Wide Lightning Location Network (WWLLN) data indicated 563 flashes (09:00–17:00 UTC) in the Gulf. NO2 data from the Ozone Monitoring Instrument (OMI) show enhancements, suggesting lightning production of NOx. At 15:05 UTC, an ozonesonde ascended into the southern edge of the now dissipating convective cell as it moved west across the Azuero Peninsula. The balloon oscillated from 2.5–5.1 km five times (15:12–17:00 UTC), providing a unique examination of ozone (O3) photochemistry on the edge of a convective cell. Ozone increased at a rate of 1.6–4.6 ppbv/hr between the first and last ascent, resulting cell wide in an increase of (2.1–2.5)×106 moles of O3. This estimate agrees to within a factor of two of our estimates of photochemical lightning O3 production from the WWLLN flashes, from the radar-inferred lightning flash data, and from the OMI NO2 data (1.2, 1.0, and 1.7×106 moles, respectively), though all estimates have large uncertainties. Examination of DC-8 in situ and lidar O3 data gathered around the Gulf that day suggests 70–97% of the O3 change occurred in 2.5–5.1 km layer. A photochemical box model initialized with nearby TC4 aircraft trace gas data suggests these O3 production rates are possible with our present understanding of photochemistry

    Neurons in the Dorsomedial Hypothalamus Promote, Prolong, and Deepen Torpor in the Mouse

    Get PDF
    Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular, projections from the preoptic area of the hypothalamus to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity-dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the preoptic area of the hypothalamus and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor

    Divergence in Dialogue

    Get PDF
    Copyright: 2014 Healey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This work was supported by the Economic and Social Research Council (ESRC; http://www.esrc.ac.uk/) through the DynDial project (Dynamics of Conversational Dialogue, RES-062-23-0962) and the Engineering and Physical Sciences Research Council (EPSRC; http://www.epsrc.ac.uk/) through the RISER project (Robust Incremental Semantic Resources for Dialogue, EP/J010383/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore