41,808 research outputs found

    Magnesium and magnesium alloys as degradable metallic biomaterials

    Get PDF
    Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium has been considered as it is essential to bodies and has a high biodegradation potential. For magnesium and its alloys to be used as biodegradable implant materials, their degradation rates should be consistent with the rate of healing of the affected tissue, and the release of the degradation products should be within the body's acceptable absorption levels. Conventional magnesium degrades rapidly, which is undesirable. In this study, biodegradation behaviours of high purity magnesium and commercial purity magnesium alloy AZ31 in both static and dynamic Hank's solution have been systematically investigated. The results show that magnesium purification and selective alloying are effective approaches to reduce the degradation rate of magnesium. In the static condition, the corrosion products accumulate on the materials surface as a protective layer, which results in a lower degradation rate than the dynamic condition. Anodised coating can significantly further reduce the degradation rate of magnesium. This study indicates that magnesium can be used as degradable implant materials as long as the degradation is controlled at a low rate. Magnesium purification, selective alloying and anodised coating are three effective approaches to reduce the rate of degradation

    SU(N) Fermions in a One-Dimensional Harmonic Trap

    Full text link
    We conduct a theoretical study of SU(N) fermions confined by a one-dimensional harmonic potential. Firstly, we introduce a new numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU(N) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz - derived for a Heisenberg SU(2) spin chain - is extendable to these N-component systems. Lastly, we consider balanced SU(N) Fermi gases that have an equal number of particles in each spin state for N=2, 3, 4. In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N-component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.Comment: 15 pages, 6 figure

    Protected nodes and the collapse of the Fermi arcs in high Tc cuprates

    Get PDF
    Angle resolved photoemission on underdoped Bi2Sr2CaCu2O8 reveals that the magnitude and d-wave anisotropy of the superconducting state energy gap are independent of temperature all the way up to Tc. This lack of T variation of the entire k-dependent gap is in marked contrast to mean field theory. At Tc the point nodes of the d-wave gap abruptly expand into finite length ``Fermi arcs''. This change occurs within the width of the resistive transition, and thus the Fermi arcs are not simply thermally broadened nodes but rather a unique signature of the pseudogap phase.Comment: Accepted by Phys. Rev. Let

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice

    Get PDF
    We study topological properties of the Bose-Hubbard model with repulsive interactions in a one-dimensional optical superlattice. We find that the Mott insulator states of the single-component (two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiments, we show that the topological Chern number can be detected through measuring the density profiles of the bosonic atoms in a harmonic trap.Comment: 5 pages, published versio

    Quantum information storage and state transfer based on spin systems

    Get PDF
    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum information processing, to appear the special issue of Low Temperature Physics dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis
    corecore