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We study topological properties of the Bose-Hubbard model with repulsive interactions in a

one-dimensional optical superlattice. We find that the Mott insulator states of the single-component

(two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized

by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiments,

we show that the topological Chern number can be detected through measuring the density profiles of the

bosonic atoms in a harmonic trap.
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Introduction.—Ultracold atoms in optical lattices can be
used to simulate strongly correlated many-body models
that are central to the understanding of condensed matter
physics. This simulation has attracted a lot of attention as
the optical lattice experiments offer unparalleled controll-
ability and new tools to study many-body physics [1–4].
As a remarkable example, the Bose-Hubbard (BH) model
has been experimentally realized with ultracold atoms and
a quantum phase transition from a superfluid to a Mott
insulator described by this model has been observed [3].
On the other hand, topological matters, such as quantum
Hall systems and topological insulators, are of fundamental
importance in physics [5]. Recently, studying topological
phases with ultracold atoms has raised great interest
[4,6–12]. In general, it requires complicated control of
experimental systems to realize topological phases with
ultracold atoms. An interesting question is whether one can
observe topological phases in a simple BH type of model,
which can be readily implemented by many experimental
groups. Topological properties of bosonic systems, how-
ever, have not been well-studied in literature, partly for the
reason that the topological invariants are usually defined as
an integration over all the occupied states in the momen-
tum space [13,14]. This definition does not apply directly
to the bosonic system as many bosons can occupy the same
momentum state.

In this Letter, in contrast to the conventional wisdom, we
show that the BH model in a one-dimensional (1D) optical
superlattice displays nontrivial topological properties.
We demonstrate that the Mott insulators of the single-
component (two-component) BH model at fractional
fillings belong to topological matter with its phase charac-
terized by a nonzero integer charge (or spin) Chern
number. For Mott insulators, the bulk system has a gap in
the excitation spectrum induced by the interaction. For a

topologically nontrivial Mott insulator state characterized
by a nonzero Chern number, we further show that there are
protected edge states inside the bulk gap under the open
boundary condition. The Mott insulators at integer fillings
for this system remain topologically trivial with a zero
Chern number and no edge states. The topological proper-
ties discussed here are reminiscent of those in topological
Mott insulators theoretically predicted in Ref. [15] for
the Fermi-Hubbard model in a honeycomb lattice with
frustrated next-neighbor interactions. Remarkably, we
here show that topological Mott insulators can appear in
a simple 1D BH model in an optical superlattice, which,
besides being conceptually interesting, makes the experi-
mental realization of topological matter much easier in the
ultracold atomic system. We propose a scheme to detect
the topological Chern number by observation of the pla-
teaus of the density profile with ultracold atoms in a weak
global harmonic trap as it is the case for experiments.
Single-component BH model in a superlattice.—We

consider a single-component bosonic gas loaded into a
1D optical lattice, which is described by the BH model

H ¼ �J
X
hiji

byj bi þ
X
j

½Unjðnj � 1Þ=2þ Vjnj�; (1)

where Vj ¼ V cosð2��jþ �Þ denotes a periodic superlat-
tice potential [16], bj and byj correspond to the bosonic

annihilation and creation operators of atoms on the jth

lattice site, nj ¼ byj bj is the number operator, and J and

U represent the hopping rate and the on site interaction
strength, respectively. We consider in this Letter a com-
mensurate superlattice potential Vj with � ¼ p=q (p, q are

integers) being a rational number and � an arbitrary tuna-
ble phase, which has been experimentally realized [16]. We
take J as the energy unit by setting J ¼ 1.
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The ground-state phase diagram of the Hamiltonian
[Eq. (1)] is well-studied [2,3,17]. For a sufficiently large
U, the system is in a gapped Mott insulator phase at
commensurate fillings with � � Nb=N ¼ m�, where m
is an integer, Nb is the atom number, and N is the number
of lattice sites. Away from the commensurate fillings or for
a small U, the system is in a superfluid state [17]. In this
Letter, we focus on study of the topological properties of
the Mott insulator phase.

The energy gap and the Chern number of the ground
state.—The topological property is best characterized by
the Chern number. To calculate the Chern number, we first
perform exact diagonalization of the Hamiltonian [Eq. (1)]
on a chain of N sites with periodic or open boundary
conditions [18]. The ground state is nondegenerate and
separated from the higher eigenstates by a finite gap � at
the commensurate fillings. This gap is shown in Fig. 1 as a
function of the interaction strength U at � ¼ 1=3. The gap
increases monotonically with U and then saturates at a
finite value. For a large U, the atoms become hard-core
bosons. In this case, each site is occupied by no more than
one atom. The hard-core boson Hubbard model can be
mapped to a model of free fermions. From that mapping,
we find that the saturation value of the gap is 1.08 (in units
of J) at a large U for an infinite system. The gap should
decrease to zero asU drops below a critical valueUc where
the system transits to a superfluid phase. In Fig. 1, due to
the finite size effect, the saturation value of the energy gap
is above 1.08 for the large U and does not drop exactly to
zero as U diminishes. However, as the number of lattice
sites increases, we clearly see the tendency that the gap
approaches these limiting values at the two ends.

Now, we investigate the topological property of the
system by calculating the Chern number. For fermions,
the Chern number is defined as an integration over the
occupied states in the momentum space [13]. This defini-
tion can not be extended to the bosonic system as many
bosons can occupy the same momentum state. Fortunately,
there is another way to calculate the Chern number for

interacting systems [19]: suppose the ground state has a
gap to the excited state and it depends on the parameters �,
� through a generalized periodic boundary condition
j�ðjþ N; �; �Þi ¼ ei�j�ðj; �; �Þi, where j denotes an
arbitrary site, � is the twist angle, and � is the phase in
the superlattice potential Vj. Under this boundary condi-

tion, we numerically diagonalize Hamiltonian [Eq. (1)] and
derive the ground state j�ð�; �Þi, which is a nondegenerate
state separated from the excited state by a nonzero energy
gap � when U >Uc. For the ground state j�ð�; �Þi where
� and � vary on a torus, one can define the Chern number
Cg as a topological invariant by the following formula [19]

Cg ¼ 1

2�

Z 2�

0
d�

Z 2�

0
d�ð@�A� � @�A�Þ; (2)

where the Berry connection A� � ih�ð�; �Þj@�j�ð�; �Þi
(� ¼ �, �). We numerically calculate the Chern number
Cg using the method for a discrete manifold [20]. When the

parameter � ¼ 1=3, we find for this boson system that
the Chern number Cg ¼ 1 (�1) for the filling fraction

� ¼ 1=3 (2=3) and Cg ¼ 0 when � ¼ 1. As an example,

we show the value of Cg as a function of U at � ¼ 1=3 in

Fig. 1, where the manifold of torus is discretized by 5� 5
meshes in the calculation. When the system is in the
gapped Mott state with U >Uc, Cg is quantized to be

exactly at 1, while Cg is unquantized when the system

enters the gapless superfluid phase. Because of quantiza-
tion of Cg, the finite size effect seems to have a minimal

influence, and we can use exact diagonalization of a small
system to get the exact value of Cg in Fig. 1 for the Mott

phase (however, because of the finite-size gap, Cg is still

approximately unity in some region of the superfluid phase
near the transition point). This calculation unambiguously
shows that this bosonic system is in a topological Mott
insulator phase with nonzero Chern number at the frac-
tional filling of the optical lattice.
Edge states.—The appearance of edge states at the

boundary is usually considered to be a hallmark of non-
trivial topological properties for the bulk system. Under
the periodic boundary condition, this interacting system is
gapped at the fractional filling � ¼ 1=3 or (2=3). However,
under the open boundary condition, edge states confined
to the boundary can appear inside the energy gap, signaling
the nontrivial topological properties of the bulk insulator.
The quasiparticle energy spectrum �En is determined
by the additional energy required to add an atom to a
system with n atoms, that is,

�EðO;PÞ
n � EðO;PÞ

nþ1 � EðO;PÞ
n ; (3)

where EðOÞ
n (EðPÞ

n ) is the ground-state energy of the system
with n atoms under the open (periodic) boundary condition
[21]. In Fig. 2(a), we show the quasiparticle energy
spectrum for a system with 96 lattice sites near the
filling � ¼ 1=3 under both periodic and open boundary

FIG. 1 (color online). The energy gap � and the Chern number
Cg [defined by Eq. (2)] as functions of the interaction strengthU.

The number of lattice sites N ¼ 9, 12, 15 are used for exact
diagonalization and we take N ¼ 15 for calculation of Cg. Other

parameters include V ¼ 1:5, � ¼ 2�=3, � ¼ 1=3, and � ¼ 1=3.
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conditions. The calculation is done using the density
matrix renormalization group method [22], which provides
a reliable approach to precisely calculate energies for any
1D systems. Near the filling � ¼ 1=3, the quasiparticle
energy spectrum is split into two branches separated by a
finite gap. The calculation clearly shows that two states
appear in the gap of the energy spectrum under the open
boundary condition. In Fig. 2(b), we show the quasiparticle
energy spectrum as a function of phase � under the open
boundary condition. Inside the gap between the lower and
the upper branches of the energy spectrum, one can see two
edge modes (which are degenerate in energy at � ¼ 2�=3)
that connect these two branches of the bulk spectrum as
one varies phase �.

To verify that the in-gap modes indeed correspond to the
edge states, we numerically calculate the excitation distri-
bution of these modes and find that they are confined near
the edges of the chain. The distribution of the quasiparticle
can be defined as

�nj ¼ h�g
nþ1jnjj�g

nþ1i � h�g
njnjj�g

ni; (4)

where j�g
ni denotes the ground state wave function of the

system with n bosonic atoms. The distribution of the in-gap
quasiparticle modes forN ¼ 96 sites under filling � ¼ 1=3
is plotted in Fig. 2(c). As expected, the in-gap states mainly

distribute near the two edges, especially for a large V. For
instance, 99% of the quasiparticle modes at V ¼ 10 are
localized at the two edge sites.
Two-component BH model in a superlattice and spin

Chern number.—If the phase � in Eq. (2) is replaced by
��, we find that the Chern number is �1 (1) for � ¼ 1=3
(2=3), that is, the sign of the Chern number is flipped. This
fact implies that we can realize a topological insulator
characterized by a nontrivial spin Chern number with a
two-component bosonic gas in a 1D optical superlattice.
To this end, we consider a simple case where the inter-
component atomic collision is turned off, e.g., through
Feshbach resonance, and the system is described by a
decoupled two-component BHmodel with the Hamiltonian

H¼�J
X
hiji�

byi�bj;�þ
X
j;�

�
U�

2
nj�ðnj��1ÞþVj�nj�

�
; (5)

where the potential Vj� ¼ V cosð2��jþ ��Þ with �" ¼
��# ¼ �, bj� denotes the bosonic annihilation operator

with the pseudospin� ¼" , # , andU� is the intracomponent
interaction rate for spin �. For this decoupled two-

component BH model, we have the Chern number C"
g ¼

�C#
g. So, although the total charge Chern number C"

g þ C#
g

cancels out to zero, the spin Chern number Cs
g ¼ C"

g � C#
g

[23] is nonvarnishing at fractional fillings. The nonzero spin
Chern number is usually associated with the quantum spin
Hall effects in two-dimensional systems [23]. For our 1D
system, spin edge states appear when the spin Chern number
is nonzero. For an examplewith� ¼ 1=3, we haveCs

g ¼ 2 at

the fractional fillings � ¼ 1=3 (2=3) and Cs
g ¼ 0 at the

integer filling. The edge states are similar to those shown in
Fig. 2. The spin up (down) edge state is confined near the
left (right) edge, respectively.
Experimental detection.—We now discuss how to mea-

sure topological Chern number in a practical experimental
setting. For atomic experiments, apart from the optical
superlattice potential, the bosons are confined in a weak
global harmonic trap. For simplicity, we consider the
large-U limit where the system is described by hard-core
bosons with no more than one atom occupying the same
lattice site. The total potential, including the optical super-
lattice and the global harmonic trap, is described by

Vj ¼ V cosð2��jþ �Þ þ VHðj� j0Þ2; (6)

where j0 denotes the position of the trap center andVH is the
strength of the harmonic trap. We use the Jordan-Wigner

transformation, byj ¼ fyj
Qj�1

m¼1 e
�i�fymfm and bj ¼Qj�1

m¼1 e
i�fymfmfj, to map the hard-core BH model to non-

interacting fermion Hamiltonian HF ¼ �J
P

jðfyj fjþ1 þ
H:c:Þ þP

jVjf
y
j fj, where fyj and fj are the creation and

annihilation operators for spinless fermions, respectively
[17,24]. The particle density of hard-core bosons coincides
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FIG. 2 (color online). (a) The quasiparticle energy spectrum
�En [see the definition by Eq. (3)] versus n under the periodic
(PBC) or open (OBC) boundary condition. The calculation is
done in a 96 site lattice near the filling � ¼ 1=3 with V ¼ 1:5,
U ¼ 10, � ¼ 2�=3, and � ¼ 1=3. (b) The edges of the lower
(�E30) and the upper (�E33) branches of the energy spectrum
and the two in-gap modes (�E31 and �E32) as functions of the
phase � under the open boundary condition. (c) The distribution
of the two in-gap modes along the chain at V ¼ 1:5, 10. The
other parameters for (b) and (c) are the same as those for (a).
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with that of noninteracting fermions as we have nj ¼
hbyj bji ¼ hfyj fji ¼ nFj with the Jordan-Wigner transforma-

tion; however, the momentum distribution for bosons is
typically very different from that for fermions.

After the hard-core bosons are mapped to fermions,
there is a simple way to figure out the Chern number.
The ground state of free fermions is a Slater determinant,

i.e., a product of single particle states j�F
g i ¼QNf

m¼1

P
N
n¼1 Pnmf

y
n j0i, with Nf ¼ Nb the number of fermi-

ons and P the matrix of the components of j�F
g i.

Supposing that the n-th eigenstate of a single particle is

denoted by jc ni ¼
P

j�j;nf
y
j j0i, the eigenvalue equation

HFjc ni ¼ Enjc ni can be written in terms of the following
Harper equation [11]

�Jð�jþ1;nþ�j;nÞþV cosð2��þ�Þ�j;n¼En�j;n; (7)

where�j;n is the amplitude of the particle wave function of

the jth site and En is the nth single-particle eigenenergy.
Compared with the Harper equation in a magnetic field, we
know that � corresponds to the magnetic flux [14].
Therefore, we can define the local density difference as

�nj ¼
njð�1Þ � njð�2Þ

�1 � �2

: (8)

The Chern number Cg can then be obtained through the

Streda formula Cg ¼ �nj under the condition that njð�	Þ
(	 ¼ 1, 2) is the local density associated with the plateau
at �	 [7,8,11,12].

Following the method outlined in Ref. [17], we numeri-
cally calculated the average density profiles for � ¼ 1=3,
1=4, with the results shown in Fig. 3. To reduce the
oscillations in density profiles induced by modulation of
the potentials, we define the local average density �nj ¼P

M
m¼�M njþm=ð2Mþ 1Þ, where 2Mþ 1 is the length to

average the density, which corresponds to the position

resolution in the experimental detection. We take M�N,
e.g., M ¼ 4 and N ¼ 300 in Fig. 3, as it is typical for
experiments. As one can see from the density profiles �nj in

Fig. 3, plateaus appear at the rational fillings � ¼ 1=3, 2=3,
1 for � ¼ 1=3, and � ¼ 1=4, 3=4, 1 for � ¼ 1=4 (the gap
at half filling in the case of � ¼ p=q with an even q is
generally closed at an integer �=� [14]). Using the Streda
formula [Eq. (8)], we obtain Cg ¼ �nj ¼ 1, �1 at the

fractional fillings � ¼ �, 1� �, and Cg ¼ 0 at the integer

filling � ¼ 1. The width of the plateaus is associated with
the size of the energy gap. To make detection of the Chern
number easier, we can adjust the frequency of the harmonic
trap to move the target plateaus to the center of the trap. For
example, if we choose VH ¼ 10�4J and other parameters
as those given in Fig. 3, the plateaus at � ¼ 2=3 for
� ¼ 1=3 and � ¼ 3=4 for� ¼ 1=4 are moved to the center
of the trap spanning from the 65th to the 235th lattice site.
With such a wide plateau, it is straightforward to read out
the Chern number Cg ¼ � �nj ¼ �1 for this case.

In summary, we have shown that for bosonic atoms in a
1D optical superlattice, the Mott insulator states of the
corresponding BH model at fractional fillings are topologi-
cally nontrivial, characterized by nonzero Chern number,
and existence of edge states. We further predict that the
topological Chern number can be detected by measuring
the plateaus in the density profilewhen the atoms are trapped
in a global harmonic potential. The model discussed in this
Letter represents one of the simplest experimental systems
to show intriguing topological properties, and the proposed
detection method allows one to confirm these topological
properties with the state-of-the-art technology.
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[22] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[23] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D.M. Haldane,

Phys. Rev. Lett. 97, 036808 (2006).
[24] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, I.

Cirac, G. V. Shlyapnikov, W. Hansch, and I. Bloch, Nature
(London) 429, 277 (2004).

PRL 110, 075303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 FEBRUARY 2013

075303-5

http://dx.doi.org/10.1103/PhysRevLett.97.240401
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevA.85.013638
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevLett.98.130404
http://dx.doi.org/10.1103/PhysRevB.73.174516
http://dx.doi.org/10.1088/0143-0807/31/3/016
http://dx.doi.org/10.1088/0143-0807/31/3/016
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1103/PhysRevB.86.085124
http://dx.doi.org/10.1103/PhysRevB.86.085124
http://dx.doi.org/10.1103/PhysRevB.84.195107
http://dx.doi.org/10.1103/PhysRevB.84.195107
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530

