3,341 research outputs found

    Kinetic conversion of CO to CH4 in the Solar System

    Get PDF
    Some of the most interesting chemistry in the Solar System involves changes in the oxidation state of the simple carbon species. The chemical pathways for the conversion of CH4 to CO and CO2 are for the most part known. The reverse process, the reduction of CO to CH4, is, however, poorly understood. This is surprising in view of the importance of the reduction process in the chemistry of the Solar System. Recently we investigated the chemical kinetics of a hitherto unsuspected reaction. It is argued that the formation of the methoxy radical (CH3O) from H+H2CO may play an essential role in the reduction of CO to CH4. The rate coefficient for this reaction has been estimated using the approximate theory of J. Troe and transition state theory. We will discuss the implications of this reaction for the chemistry of CO on Jupiter, in the solar nebula, for interpreting the laboratory experiments of A. Bar-Nun and A. Shaviv and A. Bar-Nun and S. Chang, and for organic synthesis in the prebiotic terrestrial atmosphere. The possible relation of CO reduction in the solar nebula and polyoxymethylene observed in comet Halley will be discussed

    An updated hydrocarbon photochemical model for the Jovian atmosphere from the troposphere through the homopause: A prelude to Galileo

    Get PDF
    A photochemical model for the atmosphere of Jupiter, including 1-D vertical eddy diffusive transport, was developed. It extends from the upper troposphere through the homopause. The hydrocarbon chemistry involves species containing up to four carbon atoms (and polyynes through C8H2). The calculations show that a large fraction of photochemical carbon may be contained in molecules with more than two carbon atoms. At the tropopause, C2H6 is the major photochemical species and C2H2, C3H8, and C4H10 are of comparable abundance and down from C2H6 by a factor of ten. These species may be detectable with the mass spectrometer of the Galileo Probe. The vertical distributions of the photochemical species are sensitive to the magnitude of eddy diffusive mixing in the troposphere and stratosphere and the details of the interface region

    Atomic carbon in the upper atmosphere of Titan

    Get PDF
    The atomic carbon emission C I line feature at 1657 Å (^(3)P^(0)_(J) -^(3)P_J ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C_2H_2 and C_2H_4) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations

    Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b

    Get PDF
    We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5 microns using the NICMOS instrument on the Hubble Space Telescope. The emergent spectrum contains significant modulation, which we attribute to the presence of molecular bands seen in absorption. We find that water (H2O), carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations, and we are able to estimate the mixing ratios for these molecules. We also find temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the dayside near-infrared photosphere and set an upper limit to the dayside abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter

    Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    Get PDF
    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH)

    Agricultural Perturbations of the Nitrogen Cycle and Related Impact on Atmospheric N_2O and Ozone

    Get PDF
    The available data are employed to identify the fate of agricultural nitrogen in the environment. Best estimates predict denitrification of nearly 50% of fertilizer nitrogen in less than 10 years after application. We also discuss in detail the expected demand curve for agricultural N. If population growth continues at projected levels, between 100 and 200 M tons/yr of agricultural N will be needed by the year 2000. We estimate that as a result, atmospheric N_2O could be more than doubled by 2050, and that perturbations of O_3 at that time could range from 10 to more than 20%. Major uncertainties remain however, and we emphasize the importance of further experimental research into the nitrogen cycle

    Penggunaan Metode Demontrasi untuk Meningkatkan Hasil Belajar Siswa dalam Pembelajaran IPA di Sekolah Dasar

    Full text link
    The purpose of the research for improving student learning outcomes describe the method of demonstration teaching fifth grade science studies SDN 39 Selalong. The research method is descriptive, the type of classroom action research study. The subject is the teacher and the students numbered 6 students. The technique used is the technique of direct observation. Data collection tool is teacher observation sheets and student learning outcomes. The experiment was conducted in two cycles, the results of the study: 1) the ability of teachers to plan learning method possible IPA with the first cycle of demonstration that is on average 2,88 , the second cycle average of 3,33, an increase of 0.45. 2) the ability of teachers to implement instructional IPA method possible with the first cycle of demonstratoin that is on average 2,97, second cycle average of 3,26, an increase of 0,29, 3) using the method of demonstration was found to improve student learning outcomes , namely the acquisition of the first cycle of 68 second cycle of 84, increase by 16. By using the demonstration method can improve student learning outcomes fifth grade science studies lesson SDN 6 Selalong
    corecore