research

An updated hydrocarbon photochemical model for the Jovian atmosphere from the troposphere through the homopause: A prelude to Galileo

Abstract

A photochemical model for the atmosphere of Jupiter, including 1-D vertical eddy diffusive transport, was developed. It extends from the upper troposphere through the homopause. The hydrocarbon chemistry involves species containing up to four carbon atoms (and polyynes through C8H2). The calculations show that a large fraction of photochemical carbon may be contained in molecules with more than two carbon atoms. At the tropopause, C2H6 is the major photochemical species and C2H2, C3H8, and C4H10 are of comparable abundance and down from C2H6 by a factor of ten. These species may be detectable with the mass spectrometer of the Galileo Probe. The vertical distributions of the photochemical species are sensitive to the magnitude of eddy diffusive mixing in the troposphere and stratosphere and the details of the interface region

    Similar works