9,912 research outputs found

    Electron acceleration by cascading reconnection in the solar corona I Magnetic gradient and curvature effects

    Full text link
    Aims: We investigate the electron acceleration in convective electric fields of cascading magnetic reconnection in a flaring solar corona and show the resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the coronal source. Methods: We perform test particle calculation of electron motions in the framework of a guiding center approximation. The electromagnetic fields and their derivatives along electron trajectories are obtained by linearly interpolating the results of high-resolution adaptive mesh refinement (AMR) MHD simulations of cascading magnetic reconnection. Hard X-ray (HXR) spectra are calculated using an optically thin Bremsstrahlung model. Results: Magnetic gradients and curvatures in cascading reconnection current sheet accelerate electrons: trapped in magnetic islands, precipitating to the chromosphere and ejected into the interplanetary space. The final location of an electron is determined by its initial position, pitch angle and velocity. These initial conditions also influence electron acceleration efficiency. Most of electrons have enhanced perpendicular energy. Trapped electrons are considered to cause the observed bright spots along coronal mass ejection CME-trailing current sheets as well as the flare loop-top HXR emissions.Comment: submitted to A&

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter

    Heat Transfer From Air-Cooled Contrarotating Disks

    Get PDF

    Inverstigation of Thermal Diffusivity of Composite Material by \u27Mirage Effect\u27

    Get PDF
    Thermal difrusivity is one of the important physical properties of composite materials, no matter it is used as structural or functional elements. The determination of thermal diffusivity of composite is important. Copper-Carbon and Silver-Carbon fiber composites (here after Cu-Cf and Ag-Cf) possess the properties of both of Cu and Carbon fiber. The properties of the composite are adjusted within a certain range by changing the volume and/or arrangement of carbon fiber. Thus to study the thermal difrusivity of Cu-Cf as a function of the volume fraction and the arrangement of Carbon fiber is significant for seeking the condition of that the composite with light weight, high strength, appropriate thermal diffusivity and electrical conductivity, for example, it is possible to make Cu-Cf near to metal element Mo. ‘Mirage effect’ method used first by Kuo et. al.[1] is a useful tool for determination thermal diffusivity of materials. The advantages of it are local, contactless and sensitive. So far, the value of thermal difrusivity for isotropic materials from the lowest value 5 10E-5 cm 2/ s of polymer to the highest 18.5 cm2/s of diamond respectively were obtained by Kuo et. al.[2,3]. The anisotropic thermal difrusivity was measured by Zhang et. al.[4]. However few of the reports are related to composites [5]

    From product recommendation to cyber-attack prediction: generating attack graphs and predicting future attacks

    Get PDF
    Modern information society depends on reliable functionality of information systems infrastructure, while at the same time the number of cyber-attacks has been increasing over the years and damages have been caused. Furthermore, graphs can be used to show paths than can be exploited by attackers to intrude into systems and gain unauthorized access through vulnerability exploitation. This paper presents a method that builds attack graphs using data supplied from the maritime supply chain infrastructure. The method delivers all possible paths that can be exploited to gain access. Then, a recommendation system is utilized to make predictions about future attack steps within the network. We show that recommender systems can be used in cyber defense by predicting attacks. The goal of this paper is to identify attack paths and show how a recommendation method can be used to classify future cyber-attacks in terms of risk management. The proposed method has been experimentally evaluated and validated, with the results showing that it is both practical and effective

    Natural SQL: Making SQL Easier to Infer from Natural Language Specifications

    Get PDF
    Addressing the mismatch between natural language descriptions and the corresponding SQL queries is a key challenge for text-to-SQL translation. To bridge this gap, we propose an SQL intermediate representation (IR) called Natural SQL (NatSQL). Specifically, NatSQL preserves the core functionalities of SQL, while it simplifies the queries as follows: (1) dispensing with operators and keywords such as GROUP BY, HAVING, FROM, JOIN ON, which are usually hard to find counterparts for in the text descriptions; (2) removing the need for nested subqueries and set operators; and (3) making schema linking easier by reducing the required number of schema items. On Spider, a challenging text-to-SQL benchmark that contains complex and nested SQL queries, we demonstrate that NatSQL outperforms other IRs, and significantly improves the performance of several previous SOTA models. Furthermore, for existing models that do not support executable SQL generation, NatSQL easily enables them to generate executable SQL queries, and achieves the new state-of-the-art execution accuracy

    Lattice Boltzmann study on Kelvin-Helmholtz instability: the roles of velocity and density gradients

    Full text link
    A two-dimensional lattice Boltzmann model with 19 discrete velocities for compressible Euler equations is proposed (D2V19-LBM). The fifth-order Weighted Essentially Non-Oscillatory (5th-WENO) finite difference scheme is employed to calculate the convection term of the lattice Boltzmann equation. The validity of the model is verified by comparing simulation results of the Sod shock tube with its corresponding analytical solutions. The velocity and density gradient effects on the Kelvin-Helmholtz instability (KHI) are investigated using the proposed model. Sharp density contours are obtained in our simulations. It is found that, the linear growth rate γ\gamma for the KHI decreases with increasing the width of velocity transition layer Dv{D_{v}} but increases with increasing the width of density transition layer Dρ{D_{\rho}}. After the initial transient period and before the vortex has been well formed, the linear growth rates, γv\gamma_v and γρ\gamma_{\rho}, vary with Dv{D_{v}} and Dρ{D_{\rho}} approximately in the following way, lnγv=abDv\ln\gamma_{v}=a-bD_{v} and γρ=c+elnDρ(Dρ<DρE)\gamma_{\rho}=c+e\ln D_{\rho} ({D_{\rho}}<{D_{\rho}^{E}}), where aa, bb, cc and ee are fitting parameters and DρE{D_{\rho}^{E}} is the effective interaction width of density transition layer. When Dρ>DρE{D_{\rho}}>{D_{\rho}^{E}} the linear growth rate γρ\gamma_{\rho} does not vary significantly any more. One can use the hybrid effects of velocity and density transition layers to stabilize the KHI. Our numerical simulation results are in general agreement with the analytical results [L. F. Wang, \emph{et al.}, Phys. Plasma \textbf{17}, 042103 (2010)].Comment: Accepted for publication in PR

    Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds

    Get PDF
    Due to their exceptional optical and magnetic properties, negatively charged nitrogen-vacancy (NV -) centers in nanodiamonds (NDs) have been identified as an indispensable tool for imaging, sensing and quantum bit manipulation. The investigation of the emission behaviors of single NV - centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging. Here, we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV - centers confined within the diffraction-limited region. Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance (ODMR) frequency, we discovered that two collectively blinking NV - centers can be resolved. Furthermore, when the collective emitters possess the same ground state spin transition frequency, the proposed method allows the resolving of each single NV - center via an external magnetic field used to split the resonant dips. In spin manipulation, the three-level blinking dynamics provide the means to resolve two NV - centers separated by distances of 23 nm. The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with super-resolution techniques
    corecore