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ORIGINAL ARTICLE

Spin-manipulated nanoscopy for single nitrogen-
vacancy center localizations in nanodiamonds

Martina Barbiero1, Stefania Castelletto2, Xiaosong Gan3 and Min Gu1

Due to their exceptional optical and magnetic properties, negatively charged nitrogen-vacancy (NV−) centers in nanodiamonds

(NDs) have been identified as an indispensable tool for imaging, sensing and quantum bit manipulation. The investigation of the

emission behaviors of single NV− centers at the nanoscale is of paramount importance and underpins their use in applications

ranging from quantum computation to super-resolution imaging. Here, we report on a spin-manipulated nanoscopy method for

nanoscale resolutions of the collectively blinking NV− centers confined within the diffraction-limited region. Using wide-field

localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the opti-

cally detected magnetic resonance (ODMR) frequency, we discovered that two collectively blinking NV− centers can be resolved.

Furthermore, when the collective emitters possess the same ground state spin transition frequency, the proposed method allows

the resolving of each single NV− center via an external magnetic field used to split the resonant dips. In spin manipulation, the

three-level blinking dynamics provide the means to resolve two NV− centers separated by distances of 23 nm. The method pre-

sented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with super-

resolution techniques.
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INTRODUCTION

Negatively charged nitrogen-vacancy (NV−) centers in nanodiamonds
(NDs) have emerged as promising fluorescent biomarkers with optical
imaging and sensing applications1–6. In particular, the spin transition
dependent luminescence, that is, optically detected magnetic reso-
nance (ODMR) of a single NV− center at room temperature1–3,7,
provides an indispensable tool for nanoscale spin manipulation, qubit
control and read out, as well as magnetic sensing in nanodiamonds8–14.
As such, imaging and localization of single NV− centers are pre-
requisites for the subsequent development of such applications. When
an oxidation process is performed, the blinking phenomenon
occurs13,15. Observations of intermittent photoluminescence (PL) have
been reported in NV− centers down to 5 nm discrete NDs at room
temperature13. A qualitative explanation of the blinking PL activation
based on single emitters has been given in terms of the electron
tunneling processes13,15–18. The blinking phenomenon and the asso-
ciated non-bleaching property of NDs have enabled the super-
resolution of single NV− centers within NDs at a sub-20 nanometer
resolution14.
In this work, we report on a microscopy method called spin-

manipulated nanoscopy for the super-resolution imaging of multiple
blinking NV− centers, even in the presence of collective blinking.
Collective blinking has been observed before at the nanoscale in

clusters of quantum dots19, and recently, multiple NV− centers with
cooperative light emissions have been observed in nanodiamonds20,21.
Collective blinking phenomenon occurs when a number of identical

quantum emitters are confined in a volume of Vooλ3, where λ is the
wavelength of the optical transition22. Due to the spatial confinement,
the emitters are indistinguishable and couple to the same emission
mode and each other via resonance interactions. The smaller the
confined volume of the emitters, the greater the possibility that these
emitters blink collectively. Here, we observed that the fluorescences of
two NV− centers often appear to be coupled to each other, exhibiting a
stochastic collective emitting behavior within the diffraction-limited
region. A Monte-Carlo simulation of the stochastic collective emitting
showing two NV− centers in the ‘on’ state simultaneously is depicted
in Figure 1a. Only one distinguishable higher fluorescence level is
observed, and this impacts the resolution of the localization micro-
scopy, which cannot distinguish between two events with cooperative
fluorescence emission properties23. Given microwave excitation reso-
nant with an ODMR frequency, it is possible to partially suppress the
cooperative emissions of the blinkers; as the transition
ms= 0→ms=± 1 is induced at the on-resonant NV− center, two
distinguishable higher fluorescence levels are observed in the blinking
time trace. The higher level corresponds to the two NV− centers being
in the photoluminescent ‘on’ state. The middle fluorescence intensity
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level corresponds to one emitter in the ‘on’ state while the other
emitter is in the ‘off’ state and vice versa. The partial suppression of the
collective blinking using microwave excitation is understood, assuming
that only the radiative transitions from the excited state to the ground
state spin sublevels contribute to the collective emissions. The non-
radiative transitions to the inter-system levels, crossing from the
ms=± 1 spin states24, which increase during the resonant microwave
stimulation, are not collective in nature. Additionally, the ms=± 1
spin transitions introduce dephasing in the collective emission modes
coupled with the ND resonant mode21. The analysis of the frames with
one emitting NV− center allows the localization of the individuals23, as
confirmed by the Monte-Carlo simulation of the stochastic emitting
from two NV− centers (Figure 1b). With spin-manipulated localiza-
tion microscopy, we resolve, with a nanometric resolution, the
collectively blinking NV− centers because each emitter exhibits a
spin-dependent fluorescence.

MATERIALS AND METHODS

Oxidation process
A suspension of high pressure high temperature NDs with an average
size of 70 nm14, which are acid cleaned and diluted in a MilliQ
solution, is used. A 20-min sonication procedure is implemented to
deagglomerate the NDs. A 20-μl ND solution (1:200 diluted in MilliQ
water) is drop cast on an oxygen asher plasma cleaned borosilicate
coverslip and dried in air. Oxidation at 450 °C for 2 h and at 600 °C
for 20 min in a high temperature furnace is implemented to increase
the number of blinking NDs by removing the superficial carbon atom
layer of the diamond nanoparticles, eventually leaving the NV−

emitters close to the surfaces of the NDs. When the NV− site is close
to the borosilicate coverslip, photoexcited electron(s) tunnel from the
surface-proximal NV-site to the electro-acceptor(s) located in the
adjacent medium, promoting the blinking phenomenon15.

Experimental procedures
A linearly polarized beam with a wavelength of 532 nm is used as the
excitation source through a 1.4 NA oil immersion objective lens. The
experiment is focused around the combination of a home-built
confocal microscope to measure the number of the emitters using
the Hanbury Brown and Twiss (HBT) test and a wide-field micro-
scope for the spin-manipulated nanoscopy. In the confocal config-
uration, the PL is coupled to two separate single-photon avalanche
diodes (SPADs) via a fiber beam splitter to measure the correlation of
the data with a time correlated single-photon counting card and an
HBT setup. In the wide-field configuration, a flip mounted lens directs
the illumination light to the back aperture of the objective lens. The
same objective lens collects the emitted fluorescent light and directs it
to a cooled EMCCD camera (Andor, iXon X3 897, SciTech Pty Ltd.,
Preston, VIC, Australia, Andor Technology Ltd., Belfast, UK) at
− 80 °C via a flip mounted dichroic mirror. The experimental setup
for the spin-manipulated nanoscopy is schematically depicted in
Figure 1c. First, the time-sequential photoluminescence images of
the blinking NDs are acquired (Figure 1d, upper). Furthermore, the
microwave (mw) signals for the ODMR are established using a
conductive pattern imprinted on the coverslip, as reported25. To
measure the ODMR peak, each image frame is synchronized to a mw
pulse generated from a signal generator, and the dwell time of each
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Figure 1 Dynamics of the spin-manipulated blinking fluorescence. (a) Monte-Carlo simulation of the two collectively blinking NV− centers. Fluorescence
dynamics for the two collectively blinking NV− centers within a given ND that simultaneously blink between the ‘on’ and ‘off’ states. (b) A Monte-Carlo
simulation of the stochastic blinking emission of two NV− centers. The trace shows three different intensity levels. (c) Schematic of the wide-field setup for
the spin-manipulated nanoscopy. (d) Upper: wide-field images of the NDs. The blinking ND (in the dashed circle) shows two distinctive fluorescence intensity
levels; Middle: spin-manipulated nanoscopy. Each image frame is acquired at the ODMR frequency; the exposure time is 30 ms. The blinking ND (in the
dashed circle) exhibits three distinctive fluorescence intensity levels; Lower: spin-manipulated nanoscopy for NV− centers with overlapping ODMR
frequencies. An external magnetic field of 10 Gauss is applied to split the ODMR dips; the exposition time is 30 ms. Similarly, the blinking ND (in the
dashed circle) also exhibits three distinctive fluorescence intensity levels.
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mw pulse matches the exposition time of the EMCCD camera. The
signal generator is also used to initialize the frame acquisitions by
triggering the exposure sequence of the EMCCD camera. We captured
500 images at microwave frequencies from 2.6 to 3.0 GHz with an
increment of 0.8 MHz26. An ODMR frequency is identified by
integrating the fluorescence of a 5 × 5 pixel area from the EMCCD
camera. Once the ODMR frequency is determined, spin-manipulated
nanoscopy can be implemented by continuously acquiring the
blinking intensity of the system while the signal generator provides
the mw stimulation at that ODMR frequency (Figure 1d, middle). If
the ODMR resonant frequencies overlap, a uniform 10 G external
magnetic field is applied to split the dips (Figure 1d, lower).

Particle detection, localization and visualization
At the ODMR frequency a total of 500 blinking cycles are recorded
without bleaching. A threshold is set and a new image stack with only
the frames with one emitting NV− center is built, the number of
blinking cycles recorded is more than 200. QuickPALM algorithm is
implemented to measure the position of each NV− center detected
using Gaussian fitting27,28. To correct the drift, one immobilized
emitter is selected in the image as a reference point23. Finally, the
images are resized with the software ImageJ (US National Institutes of
Health, Bethesda, MD, USA) by using an integer scale factor equal to 4
and a bilinear interpolation.

RESULTS AND DISCUSSION

Collectively blinking NDs
During collective blinking, the NV− centers within the diffraction-
limited region cannot be optically resolved, although the total number
of emitters is discernible using autocorrelation. Without losing the
generality, for the collectively blinking ND in Figure 2a, we report the
HBT measurement29,30. The second-order autocorrelation function
g2(0)= 0.5 indicates two NV− centers within the diffraction-limited
region. The coupling between the adjacent NV− centers reveals a
collective fluorescence emission with an ‘on’ ‘off’ blinking trajectory in
time, and the photon count distribution (Figure 2b) shows two well
separated peaks describing the ‘on’ and the ‘off’ events for the two
emitters, respectively.

Effect of the oxidation process
The collective fluorescence emission is observed after the size of the
NDs is reduced via oxidation (Supplementary Fig. S1). The ND
dimension achieved after oxidation justifies a collective radiative
emission of multiple NV− centers as the NV− zero-phonon line is
637 nm. As result of the reduction in size of the NDs, a decreased
number of NV− centers are observed (Supplementary Fig. S2a

and S2b). Moreover, the close confinement of the NV− centers within
the host ND increases the possibility that these emitters will blink
collectively. Microwave applications combined with optical stimula-
tions enable the detection of the ODMR resonance transitions within
the oxidized ND (Supplementary Fig. S2c). At the ODMR frequency,
the distribution of the photon counts clearly shows a fluorescence
intermittence, confirming the blinking phenomenon (Supplementary
Fig. S2d). Among all of the observed NDs after oxidation, spin-
manipulated nanoscopy is applied to a single NV− center in a single
ND for the super-resolved spin imaging9,31, and on two collectively
blinking NV− centers in a single ND, to resolve each single emitter.

Spin-manipulated nanoscopy of a single NV− center
The second-order autocorrelation function g2(0)o0.5 and the ODMR
measurement for a single NV− center in an oxidized ND are reported
in Figure 3a. When the resonant microwave f1 induces the transition
from ms= 0 to ms=± 1, a low photon count rate is recorded during
the ‘on’ state of the acquired PL blinking (Figure 3b). The stochastic
blinking associated with the ODMR frequency f1 enables the assign-
ment of spin information to the nanoscale localization. A super-
resolved image of a single NV− center, with a full width at half-
maximum (FWHM) of 34 nm embedded within a single ND, is
reconstructed (Figure 3c). When an external B field of 10 Gauss is
applied, the ODMR signal shows two dips (Figure 3d). Spin-
manipulated nanoscopy applied at frequencies f2 and f3 allows
potential super-resolution imaging and parallel read outs of the NV−

magnetic sensitive spin. Figure 3d shows the super-resolved image of
the spin state ms=− 1 associated with the frequency f2 as well as the
super-resolved image of the spin state ms=± 1 associated with the
frequency f3. The FWHM is 34 nm in both cases.

A time study of collectively blinking NDs
When an ND contains two collectively blinking NV− centers, spin-
manipulated nanoscopy can be implemented to partially suppress the
cooperative emissions and thus the coupling between the emitters.
A three-level time dependent fluorescence with distinguishable ‘on’
and ‘off’ intensity states is observed. To demonstrate that ODMR
changes the blinking interactions between the NV− emitters, an ‘on’
time duration study is carried out. To calculate the ‘on’ time duration,
a threshold is set. In the case of collective blinking, the threshold
corresponds to the background intensity value (threshold τ= 2000
photon counts, Supplementary Fig. S3a, top). The ‘on’ time duration is
calculated from the fluorescence intensity values above the threshold,
which represent the collective ‘on’ ‘on’ state at the NV− centers. When
an ODMR frequency is applied, the threshold is above the maximum
recorded ‘on’ ‘off’ fluorescence intensity (threshold τ= 2400 photon
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Figure 2 Collective blinking study. (a) Fluorescence image of NDs; the collectively blinking ND is in the red circle. The HBT test was performed to measure
the number of emitters for the ND in the red circle. The result describes two NV− centers within the ND cluster. (b) The PL intensity ‘on’ and ‘off’ trajectories
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counts, Supplementary Fig. S3a bottom)19. A histogram of the
durations of the ‘on’ periods of the blinking traces represents the
‘on’ time probability distribution P(t)on

32. A first-order exponential-
decay fitting model PðtÞonpA0e

t
ton is performed to determine the τon

durations. The fitting shows τon/on_c= 397.5 ms and τon/
on_i= 274.4 ms. In the case of the collectively blinking NV− centers,
the blinking fluorescence dynamics reveal longer ‘on’ time durations
(τon/on_c), and this can be justified when the emitters are simulta-
neously in the ‘on’ state. When using spin manipulation, the emitters
blink independently; therefore, they are not in the ‘on’ state
simultaneously and the (τon/on_i) has a shorter duration
(Supplementary Fig. S3b).

Spin-manipulated nanoscopy of two collectively blinking NV−

centers
For the collectively blinking ND, the ODMR signal is characterized by
the dips at two different frequencies, f1 and f2, corresponding to two
NV− centers (Figure 4a). As an example, at the ODMR frequency f1,
the spin-dependent blinking fluorescence reveals a histogram of a
three-state emission configuration (Figure 4b). The higher fluores-
cence level corresponds to the emissions from the two NV− centers,
the middle fluorescence level corresponds to the emissions from only
one NV− center and the lower intensity level corresponds to the ‘off’
state for both NV− centers. In the case of collective blinking, the
super-resolution localization code can only consider the coupled
fluorescence emitters with intensity distributions such that the
stochastic change between an ‘on’ state and an ‘off’ state are treated
as one event; thus, the centroids retrieved numerically from all of the
frames are reconstructed to form a final unresolved image of one

emitter23. Figure 4c shows the super-resolution image of the emission
spot based on collective blinking; the FWHM is 52 nm. Once the spin-
manipulated nanoscopy is applied, only the frames with one emitting
NV− center are selected during the super-resolution reconstruction
process. As a result, Figure 4d shows the zoomed-in view of the resolved
single NV− emitters at the ODMR frequency f1. The reconstructed
image clearly reveals two NV− emitters separated by a distance of
23 nm. It is also possible to resolve the two NV− emitters at the second
ODMR frequency f2 with similar results (Supplementary Fig. S4). To
verify the blinking behavior of the NV− centers with frequencies
different from the resonant one are used, including three random
frequencies f3, f4 and f5 (Supplementary Fig. S5a). At these three
frequencies, the blinking trace shows collective ‘on’ and ‘off’ fluores-
cence emissions, and the two state photon count distributions describes
the ‘on’ and the ‘off’ events for the two transmitters (Supplementary Fig.
S5b–S5d). Therefore, it is the ODMR excitation that interrupts the
coupling between the emitters, confirming the model of the nature of
the intersystem crossing transitions in the non-cooperative emissions,
and the reductions of the cooperative emissions are due mostly to the
dephasing mechanism from the ms=± 1 spin transitions21.

Spin-manipulated nanoscopy of two collectively blinking NV−

centers with overlapped ODMR frequencies
When the collective emitters possess the same ground state spin
transition frequencies, an external magnetic field is applied to split the
resonant dips. The collectively blinking traces and the HBT test
showing two NV− centers within the ND are reported in
Supplementary Fig. S6. The ODMR signal shows only one dip for
the two emitters (black curve in Figure 5a). When an external B field
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of 10 Gauss is applied, the overlapped ODMR dips, split into four dips
(red curve in Figure 5a). The different shifts of the ODMR dips are
caused by different factors, such as the polarization, beam power, and
orientation of the magnetic field applied to the optical axis of the NV−

centers33–35. Once spin-manipulated nanoscopy is applied at frequency
f1 (Figure 5a); the spin-dependent blinking fluorescence and photon
count distribution at frequency f1 show three states (Figure 5b). The
reconstructed image based on the collective blinking data shows a
single emission spot with an FWHM of 57 nm (Figure 5c). In
Figure 5d the zoomed-in area of the resolved single NV− centers,
using the ODMR frequency f1. The reconstructed image reveals two
NV− emitters separated by 27 a distance of nm.

CONCLUSION

The combination of the spin read out and sensing with the super-
resolution imaging and nanometric localization of single NV− centers
has been at the center of many proposed methods for advancing
nanometric magnetic resonance imaging9,31,36–39. In this work, we
have presented spin-manipulated nanoscopy to resolve single NV−

centers in blinking NDs with an average size of 42 nm, where the
photoluminescence intermittency is achieved via oxidation13–16. The
relevance of the super-resolution methods applied to the NDs is
motivated by their wide range of applications in the life sciences
compared to bulk diamonds40. Furthermore, smaller probes are a
common need in biomedical imaging, and the blinking phenomenon
is more likely when the size of the nanodiamonds is reduced. Our
method allows the imaging of the spin states at the nanoscale in
individual NV− centers in single blinking NDs. Each single emitter is
resolved independently from its off-resonant image, which is necessary
for the super-resolution technique, based on the spectral differences9.
The proposed method enables the decoupling of the collectively
blinking emissions and, thus, image reconstruction using different
temporal domain frames can be utilized, as can that with different
spectral domains. By manipulating the spin states of two collectively
blinking NV− centers, it is possible to identify the localization of single
NV− centers in collectively blinking nanodiamonds separated by
nanometer distances under resonant microwave radiation. Further,
the application of an external magnetic field enables the resolution of
the collective emitters when they possess the same ground state spin
transition frequency.
The potential to distinguish different color centers within the same

nanodiamond enables the nanoscale reconstruction of the magnetic
resonance image of closely spaced NV− centers. Therefore, the
presented method adds a greater value to the applications of NDs as
biomarkers for super-resolved magnetic imaging in the life sciences.
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