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Abstract. Modern information society depends on reliable functionality of information systems 

infrastructure, while at the same time the number of cyber-attacks has been increasing over the years 

and damages have been caused. Furthermore, graphs can be used to show paths than can be exploited 

by attackers to intrude into systems and gain unauthorized access through vulnerability exploitation. 

This paper presents a method that builds attack graphs using data supplied from the maritime supply 

chain infrastructure. The method delivers all possible paths that can be exploited to gain access. Then, 

a recommendation system is utilized to make predictions about future attack steps within the network. 

We show that recommender systems can be used in cyber defense by predicting attacks. The goal of 

this paper is to identify attack paths and show how a recommendation method can be used to classify 

future cyber-attacks in terms of risk management. The proposed method has been experimentally 

evaluated and validated, with the results showing that it is both practical and effective. 
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1. Introduction 

Recommender systems are decision support systems available on the web to assist users in the 

selection of item or service selection in online domains. In doing so recommender systems assist users 

in overcoming the information overload problem (Lu, Wu, Mao, Wang, & Zhang, 2015; Polatidis & 

Georgiadis, 2013). Collaborative filtering (CF) is the most widely used method for providing 

personalized recommendations. In CF systems, a database of user submitted ratings is used and the 

generated recommendations are generated on how much a user will like an unrated item based on 

previous common rated items. Thus, the recommendation process is based on assumptions about 

previous rating agreements and if these agreements will be maintained in the future. In addition, the 

ratings are used to create an n x m matrix with user ids, item ids and ratings, with an example of such 

a matrix shown in table 1. This database has four users and four items with values from 1 to 5. The 

matrix is used as input when a user is requesting recommendations and for a recommendation to be 

generated the degree of similarity between the user who makes the request and the other users’ needs 

to be predicted using a similarity function such as the Pearson Correlation Similarity (PCC) (Su & 

Khoshgoftaar, 2009). At the next step, a user neighborhood which consists of users having the highest 
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degree of similarity is created with the requester. Finally, a prediction is generated after computing the 

average values of the nearest neighborhood ratings about an item, resulting in a recommendation list 

of items with the highest predicted rating values. 
 

Table 1. An Example of a Ratings Matrix 
 Item 1 Item 2 Item 3 Item 4 

User 1 1 2 5 - 

User 2 4 5 4 1 

User 3 - - 3 2 

User 4 1 1 2 5 

 

 

 

Even though, recommender systems have been used for product or service recommendation, in the 

current era where cyber-attacks have been increasing we show that they can be useful in attack 

prediction as well. In networks is important to be able to identify potential attacks made by local or 

network-based attackers and prevent them. Moreover, cyber-attackers tend to exploit vulnerabilities 

within a network and form attack paths from one asset to another until they have reached the asset 

they wish to harm. Recommender systems is a technology that has been used mostly in e-Commerce 

for product recommendation but can also be used in cyber-security to predict how an attacker might 

move within a network after a vulnerability has been exploited. Furthermore, it is a fact that among 

assets there exist common or similar vulnerabilities and a recommender system can be used to identify 

such similarities. 
 

1.1 Problem definition and contributions 

Cyber-attack prevention methods are based on graph analysis to identify attack paths or use previous 

attacker knowledge in combination with intrusion alerts to provide defense actions in real time. A gap 

is identified in attack prediction which can be solved with the use of suitable technologies. We have 

made the following contributions: 

 

1. We identify all attack paths in a graph according to constraints. 

2. We use the attack paths in combination with common vulnerability data to predict future 

attacks. 

3. We use real data and a risk management system for the maritime supply chain IT 

infrastructure for the evaluation where we show that the method is both practical and 

effective. 

 

1.2 Paper structure 

In section 2 relevant background work is analyzed. In section 3 the proposed method is explained. 

Section 4 presents the experimental evaluation of the attack path discovery method, Section 5 is the 

evaluation of the attack prediction method, Section 6 is the discussion and section 7 contains the 

conclusions and future work parts. 

 

 

2. Background 

 

2.1 Attack graph generation and analysis 

Cyber-attack prevention technologies typically use attack graph generation and analysis methods to 

identify all possible paths that attackers can exploit to gain unauthorized access to a system (Ou & 

Singhal, 2011). There are numerous methods available for attack graph generation and analysis. In 

(Templeton & Levitt, 2000) the authors use a general graph model, which is based on the JIGSAW 

specification language. Sample attack scenarios are created using different methods such as 

substitution, distribution and looping. In (Ning & Xu, 2003) the authors developed an intrusion 

correlator for intrusion alerts, which produces correlation graphs as output. Then, they use these 



graphs to create attack strategy graphs. The authors in (Ritchey & Ammann, 2000) utilize modeling 

based approach that is used to perform an analysis of the security of the network. This is done using 

model checking tools and a model is presented that describes the vulnerability to attack of the 

network. In (Sheyner, Haines, Jha, Lippmann, & Wing, 2002) the authors developed a tool called 

NuSMV, a Network Symbolic Model checker. This is a model checking tool that implements an 

algorithm for automatic generation of attack graphs. A logic-based approach is proposed in (Xinming 

Ou, Wayne F. Boyer, 2006). In this approach, the authors use logic rules to compute the attack graph 

and use logic deduction to reach the final facts from the initial facts. Although, this approach suffers 

from performance issues as the state grows. In (Ammann, Wijesekera, & Kaushik, 2002) a Breadth-

first search solution is used by the authors to build the attack graph. A layered solution is proposed 

where the bottom layer contains attacker privileges and the upper layer contains the privileges 

computer after each step of the algorithm. Once again, as the size of the graph grows there are 

performance issues. In (Ammann, Pamula, Ritchey, & Street, 2005) the authors propose an algorithm 

that only creates a graph containing the worst case scenarios. This approach performs better in terms 

of performance, but it cannot guarantee that all relevant paths will be returned. In (Ingols, Lippmann, 

& Piwowarski, 2006) the authors try to reduce complexity by introducing the concept of group 

reachability. This method uses a breadth first method and uses prerequisite graphs that express 

reachability conditions among network hosts. The authors in (Ingols, Chu, Lippmann, Webster, & 

Boyer, 2009) develop further the prerequisite graphs by adding information about client-side attacks, 

firewalls and intrusion detection. In (Kaynar & Sivrikaya, 2016) the authors use a distributed attack 

graph generation algorithm based on a multi-agent system, a virtual shared memory abstraction and 

hyper-graph partitioning to improve the overall performance of the system. The method is based on 

depth first search and it is shown that the performance is improved with the use of agents after a 

specific graph size. In (Xie, Zhang, Hu, & Chen, 2009) the authors use a bidirectional search method 

to generate the attack graph. They also apply a restriction about the depth of the search, which limits 

the algorithm from identifying less possible attacks. In (Ghosh & Ghosh, 2012) an approach that is 

based on artificial intelligence with the name Planner is applied to generate the attack graph. 

Customized algorithms are used to generate attack paths in polynomial time. In (Phillips & Swiler, 

1998) the authors propose a graph-based approach to analyze vulnerabilities, that can analyze risk to a 

specific asset and examine possible consequence of an attack. In (Almohri, Watson, Yao, & Ou, 

2016) the use of a probabilistic model is proposed. This model measures risk security, computes risk 

probability and considers dynamic network features. A somewhat different approach is proposed by 

the authors in (Bi, Han, & Wang, 2016). The use of dynamic generation algorithm is proposed, that 

returns the top K paths. Furthermore, it is not required to calculate the full attack graph to return the 

top attack paths. NetSPA is a network security planning architecture that very efficiently generates the 

worst case attack graphs (Artz, 2002). To do this the system uses information from software types and 

versions, intrusion detection systems, network connectivity and firewalls. In (Poolsappasit, Dewri, & 

Ray, 2012) the use Bayesian attack graph generation for dynamic security risk management. In (Ou, 

Govindavajhala, & Appel, 2005) the authors developed  Multi-host, Multi-stage Vulnerability 

Analysis Language (MulVAL), a logic-based network security analyzer. This is a vulnerability 

analysis tool that models the interaction of software bugs along with network configurations. The data 

about the software bugs are provided by a bug-reporting community, while all the other relevant 

information is enclosed within the system. In addition to MulVAL, Topological Vulnerability analysis 

(TVA) is another tool for generating attack graphs (Jajodia, Noel, & O’Berry, 2005; Ou & Singhal, 

2011). TVA is based on topological analysis of network attack vulnerability and the idea is to exploit 

dependency graph to represent preconditions and postconditions and then exploit. At the next step, a 

search algorithm finds attack paths that exploit multiple vulnerabilities.  
 

 

2.2 Collaborative filtering 

As explained above a database of ratings and a similarity function such as PCC are the two essential 

parts of the CF recommendation process. Except for the classical recommendation method, PCC, 

another similar method found in the literature is weighted PCC (WPCC) which extends PCC by 

setting a statically defined threshold of common rated items. However, since the definitions of PCC 

and WPCC numerous approaches have been proposed with the aim of improving the 



recommendations. TasteMiner  is a method that efficiently mines rating for learning partial users 

tastes to restrict the neighborhood size, thus reducing complexity and improving the accuracy of the 

recommendations (Shams & Haratizadeh, 2017). Another CF approach that aims to improve the 

accuracy of the recommendations is entropy based can be found in the literature. In this approach an 

entropy driven similarity used to calculate the difference between ratings and a Manhattan distance 

model is then used to address the fat tail problem (Wang, Zhang, & Lu, 2015). One more similarity 

measure for improving the accuracy of CF has been proposed with the name PIP. This measurement is 

based on Proximity, Impact and Popularity (PIP). Initially the proximity factor is applied to calculate 

the absolute difference between two ratings, then the impact factor is applied to show how strongly an 

item is preferred and finally the popularity factor is applied to how common the user ratings are. 

These three factors are then combined to calculate a final value  (Liu, Hu, Mian, Tian, & Zhu, 2014). 

HU-FCF  is a hybrid fuzzy CF method for improved recommendations (Son, 2014). In this method, 

CF is extended with a fuzzy similarity that is calculated on user demographic data. A CF 

recommendation method based on singularities has been proposed (Bobadilla, Ortega, & Hernando, 

2012). In this method, the traditional similarities can be improved if contextual information from the 

entire user body are used to calculate singularities. Thus, the larger the singularity between users then 

the impact of it in the similarity is larger. Additionally, the use or power law augments to similarity 

values can be found in the literature with the name PLUS (M. Gan & Jiang, 2013). PLUS, is a method 

applied to user similarities to adjust their value using a power function and achieves a tradeoff 

between accuracy and diversity of the recommendations. Yet another approach for improved 

recommendations is the use of Pareto dominance (Ortega, Sánchez, Bobadilla, & Gutiérrez, 2013). 

Pareto dominance is used initially as a pre-filtering service were the less promising users are 

eliminated from the user neighborhood. Then, the rest are used in a typical CF recommendation 

process. An additional recommendation approach includes the breakup of the user neighborhood in 

multiples levels (Polatidis & Georgiadis, 2016). This can be done either using a static approach  or a 

dynamic one (Polatidis & Georgiadis, 2016, 2017). In both approaches the user similarities are 

adjusted either in a positive or a negative way based on the number of co-rated items and the PCC 

values and are assigned to one of multiple levels based on the final computed value. Thus, the 

predictions are made using the new user neighborhood and the recommendations are improved. An 

additional method that can be used to improve the quality of the recommendations is natural noise 

removal (Toledo, Mota, & Martínez, 2015). Items and users are characterized based on their profiles 

and a defined strategy is used to eliminate natural noise, thus receiving more accurate 

recommendations. Also, other traditional approaches exist that can be used to improve CF and include 

the use of content-boosted CF or the utilization of sparsity measures (Anand & Bharadwaj, 2011; 

Melville, Mooney, & Nagarajan, 2002). COUSIN  is a recommendation model that improves both the 

accuracy and the diversity of the recommendations by using a regression model that effectively 

removes weak user relationships (M. Gan, 2016). There is also an approach in the literature called 

Trinity  that uses historical data and tags to provide personalized recommendations based on a three-

layered object-user tag network (M.-X. Gan, Sun, & Jiang, 2016). In addition to the methods 

mentioned already the use of user-item subgroups has been proposed as a way of providing improved 

recommendation systems (Xu, Bu, Chen, & Cai, 2012). 
 

2.3 Combination of attack graph analysis and collaborative filtering for attack prediction 

In sections 2.1 and 2.2 related works regarding attack graph analysis and collaborative filtering 

methods have been explained. In section 2.1 related works about graph analysis have been analysed 

due to the fact that analysing a graph and identifying possible attack paths is the first path of the attack 

path recommendation process. In section 2.2 related works about collaborative filtering 

recommendation methods have been analysed to identify the most relevant ones that can be used for 

attack prediction. The related works have been analysed in order to identify the most relevant attack 

graph analysis method and the most relevant recommendation method. We have most suitable 

methods from both categories that have the most features. For attack graph analysis a method has 

been selected that satisfies criteria such as the location and the knowledge of the attacker and supports 

pruning of paths. On the other hand collaborative filtering is the most suitable method since it 

provides a reliable method for identifying similar vulnerabilities. Furthermore, multi-level 

collaborative filtering works better when the similar vulnerabilities have very similar characteristics, 



since it considers the common similar vulnerabilities except the similarity values derived from similar 

vulnerabilities. 

 

3. Proposed method 

Our proposed method takes elements from both collaborative filtering recommender systems and 

attack path discovery methods to identify attacks paths and predict attacks. Initially, we use an attack 

path discovery method that has unique characteristics, such as the attacker location, the attacker 

capability and which the entry and target points are (Polatidis, Pavlidis, & Mouratidis, 2018; Polatidis, 

Pimenidis, Pavlidis, & Mouratidis, 2017). The attack path discovery method returns all non-circular 

attack paths that exist between assets that belong to the specified characteristics.   
 

 

3.1 Attack path discovery 

Attackers can use a set of basic privileges that can satisfy some initial input requirements to gain 

unauthorized access to a system. Attack graphs show every possible path that an attacker can use to 

gain further privileges (Barik & Mazumdar, 2014; Ou & Singhal, 2011). In general, various 

vulnerabilities, such as software vulnerabilities or inappropriate configuration settings, exist in 

information systems and can be exploited by attackers to gain access. An infrastructure it typically 

comprised of numerous nodes that can be exploited to intrude into the network. In addition, the 

number of vulnerabilities that exist on the network and the reachability conditions that occur are the 

factors that determine the size of the attack graph. In, addition as the graph becomes larger, the 

possibility of more exploitation options for an attacker increases. To build the attack graph we use 

direct conditions and utilize information from open sources. Initially, the weaknesses defined in the 

Common Weakness Enumeration (CWE) (“CWE,” n.d.) are used, and at the second step, Information 

from the Common Vulnerabilities and Exposures (CVE) (“CVE,” n.d.) database are used. A model is 

introduced where an attacker can gain access to information system sources and move in a directed 

path. Moreover, a set of preconditions are specified, which include the length of the path, the location 

and capability of the attacker.  
 

The pseudocode of the attack path discovery is shown in algorithm 1, while the following activities 

need to be executed for the algorithm to identify the attack paths, while the term business partners 

refer to partners of a supply chain in the maritime sector: 
 

 

1. Activity 1: Entry Points Identification: The Business Partners have to define the Entry 

Points (assets from which the attacks will be initiated; these assets are considered as more 

reachable by an attacker). Moreover, the business partners should be experts with an 

information technology (IT) and security background and be know the infrastructure.  
2. Activity 2: Target Points Identification: The Business Partners must define the Target 

Points (the assets which are considered as target for attacks due to their criticality).  

3. Activity 3: Identify Attacker Profile: Attacker profiles will be identified by their location 

and their expertise. Their location is represented by the values 1, 2 and 3 (local, adjacent and 

network). Their expertise is represented by the values 1, 2 and 3 (low, medium and high). In 

algorithm 1 the variables ‘attacker location’ and ‘attacker capability’ takes values from 1 to 3. 

4. Activity 4: Generate Vulnerability Chains: This step follows a rule-based reasoning 

approach (filters) to generate the chain of sequential vulnerabilities on different assets that 

arise from consequential multi-steps attacks initiated from the Entry Points to exploit the 

vulnerabilities of the Target Points. 

 

  

 

Algorithm 1: Attack path discovery 

Input: Asset graph (G), attacker location, attacker capability 

Output: Graph, affected assets, attack paths 



#We create two empty lists to hold attack paths and assets 

attackpaths = [] affectedassets = [] 

#We return all paths from source to target 

for e in parameters entry points 

If (attacker location < required level of attacker location 

/*explain attacker location  

OR attacker capability < required attacker capability) 

/*explain attacker capability 

return empty graph 

else if 

(attacker location >= required level of attacker location  

OR attacker capability >= required attacker capability) 

AND  

(vulnerability type == Code execution 

OR vulnerability type == Code overflow 

OR vulnerability type == XSS 

OR vulnerability type == Bypass something 

OR vulnerability type == Obtain privilege 

OR vulnerability type == Memory corruption) 

get single source shortest path length  

set propagation length for entry point e 

for target point t 

#Create a list with all non-circular paths from entry e to target t 

get all paths in the graph G from entry e to target t that are up to the pre-specified path length 

 for the size of paths found 

  add paths to attackpaths [] list, add affected assets to affectedassets [] list 

#Return the graph, the affected assets and the attack paths found as a direct input to  

#the attack visualization algorithm 

return Graph, affected assets, attack paths 

 

 

3.2 Attack prediction 

To recommend attack predictions we use a parameterized version of multi-level collaborative filtering 

method described in (Polatidis & Georgiadis, 2016), although other methods could be applied 

according the scenario and the available data. This method applies collaborative filtering and then 

rearranges the order of the k nearest neighbors according to the similarity value and the number of co-

rated items. We use characteristics from the above-mentioned method to classify attacks. To do that 

we initially apply classical collaborative filtering using PCC defined in equation 1. In PCC Sim (a, b) 

is the similarity of users a and b, ra,p is the rating of user a for product p, rb,p is the rating of user b for 

product p and 𝑟´𝑟, 𝑟´𝑟 represent user's average ratings. P is the set of all products. At the next step, 

we check the similarity values returned by equation 1 and the number of co-rated vulnerabilities. 

Depending on the similarity value returned and the common vulnerabilities, we classify these attacks 

from very high to very low. Finally, we check if there are any attack paths between the assets before 

the classification process is finished. A detailed explanation of the steps can be found in algorithm 2 

which provides the pseudocode of the attack prediction recommender system. Finally, it should be 

mentioned that classical collaborative filtering without any other parameters could be used but this 

could raise issues when many common vulnerabilities exist between assets due to the fact of a high 

returned similarity value. 
 

 

𝑟𝑟𝑟 𝑟,𝑟 =
∑ 𝑟 ∈ 𝑟(𝑟𝑟,𝑟 − 𝑟´𝑟)(𝑟𝑟,𝑟 − 𝑟´𝑟)

√∑ 𝑟 ∈ 𝑟(𝑟𝑟,𝑟 − 𝑟´𝑟)2√∑ 𝑟 ∈ 𝑟(𝑟𝑟,𝑟 − 𝑟´𝑟)2
(1) 

 



 

Algorithm 2: Attack prediction 

Input: attack paths, affected assets, vulnerabilities 

Output: predicted attacks 

#Vulnerabilities refers to common vulnerabilities between assets 

load vulnerabilities (CVEs) 

load vulnerability types (CWEs) 

apply equation 1 using vulnerabilities as input 

get similarity values  

#If there are common vulnerabilities, then typically these receive the same score  

#between assets, thus, resulting in absolute similarities 

#Then we rearrange the order of the similarity by adding the number of co-rated items as a constraint 

#classification refers to predicted attack classification, which is from very high to very low 

then #n represents the number of co-rated items and x1, x2, x3 and x4 are fixed integers 

 if n>=x1 && vulnerability belongs to the same type then classification == very high 

else if (n<x1 && n>=x2) vulnerability belongs to the same type && then 

classification == high 

  else if n<x2 && n>=x3 then classification == Medium 

  else if n<x3 && n>=x4 then classification == Low 

 else classification == very low 

then 

 get attack paths 

  if attack path exists 

   set classification == very high 

else if attack path does not exist && classification == very high then classification == high 

  else classification == classification 

Return predicted attacks 

 

 

4. Attack path generation evaluation 

The experiments took place in a simulated environment using a Pentium i7 2.8 GHz with 12 gigabytes 

of RAM, running windows 10. Section 4.1 represents the performance evaluation, while section 4.2 

provides a comparison with other methods. 

 

4.1 Performance evaluation 

This section presents the performance evaluation of the attack graph generation algorithm, with the 

results presented in table 2 and figure 1. To examine the performance and feasibility of the proposed 

attack paths generation approach to identify and calculate all the possible attack patterns, we will use 

the Port’s Services Requested Supply Chain sub process of the “vehicles transport service”, which is a 

part of the supply chain that includes a number of assets regarding this service only. The “Port’s 

Services Requested” sub-process aims to illustrate the interactions among the Port Authority, the Ship 

Agent and the Customs to request services for the vessel’s arrival or departure. Manifest Registration 

Number (MRN) is required in the current sub-process to precede with these tasks and includes assets 

regarding this service of the supply chain only. The Ship Agent submits the Manifest Registration 

Number (MRN) received from the Customs to the Port Authority requesting services for the vessel 

such as, mooring, lacing, assigning risk assessment processes weather conditions, navigational 

warnings, procedures for communication failure, fenders, personnel (truckers for transferring the 

vehicles from the Industry to storage area, etc.). This process is performed via the Port Community 

System (PCS) that is an electronic platform which connects the multiple systems operated by a variety 

of organizations involved in the port’s supply chain. This system facilitates the secure and efficient 

electronic exchange of information between the public and private stakeholders and allows the 

automatization and the smooth operation of the port and logistics processes through a single request 

submission. It should be noted that about 180 cyber assets (35 hardware assets and 145 software 

assets) with different product characteristics and technical specifications (such as product version, 



vendor) as well as with several associated confirmed Vulnerabilities and flaws (including CVE’s, 

CVSS data, vulnerability type or vulnerability details) identified that are necessary to support the 

provision of the process. 
 

Table 2.  Performance evaluation results 

No. of test 
Attacker 

Capability 

Propagation 

length 

No of entry 

points 

No of target 

points 

Running 

time 

1 Low 3 5 5 <1 

2 Low 4 5 5 <1 

3 Low 5 5 5 <1 

4 Medium 3 5 5 <1 

5 Medium 4 5 5 <1 

6 Medium 5 5 5 1 

7 High 3 5 5 <1 

8 High 4 5 5 1 

9 High 5 5 5 1.2 

10 High 3 25 25 1.35 

11 High 5 25 25 1.50 

12 High 10 25 25 1.95 

 

 

 

 

Fig. 1. Performance evaluation based on 180 assets  

 

4.2 Attack graph generation algorithm comparison with other methods 

The proposed method has been compared with the following long established and state-of-the-art 

alternatives. The first two are the most relevant and well-established methods found in the literature, 

while the following two are the most relevant state-of-the-art similar methods found in the literature. 

The methods have been selected due to the fact that are the most relevant and can be used for risk 

management. Moreover, the selected methods include both traditional and state-of-the-art approaches 

that satisfy most of the criteria discussed in section 4.2.1 and appendix A, while none of these 

alternatives satisfies the criteria as a whole. 
 

1. Long established methods 

 (Sheyner, Haines, Jha, Lippmann, & Wing, 2002 ). 
This is a model checking tool that implements an algorithm for automatic generation 

of attack graphs with the name NuSMV. 



 (Jajodia et al., 2005; Ou & Singhal, 2011). 
This is a tool named TVA that is based on topological analysis of network attack 

vulnerabilities and the idea is to exploit a dependency graph to represent 

preconditions and postconditions and then exploit them. At the next step, a search 

algorithm finds attack paths that exploit multiple vulnerabilities. 
 

2. State-of-the-art 

 (Kaynar & Sivrikaya, 2016). 
This method uses a distributed attack graph generation algorithm based on a multi-

agent system, a virtual shared memory abstraction and hyper-graph partitioning to 

improve the overall performance of the system. 

 (Bi, Han, & Wang, 2016 ). 
The use of dynamic generation algorithm is proposed in this method and returns the 

top K paths. 

 

 

4.2.1 Evaluation criteria 

17 criteria have been identified and used for evaluating the quality of the algorithm. The selection was 

based on algorithm characteristics found on previous studies and current trends in risk management 

(Kaynar & Sivrikaya, 2016; Lever & Kifayat, 2016; Polatidis et al., 2018; Yi et al., 2013). The details, 

of the criteria can be found in appendix A, while the criteria are also presented briefly within table 3. 
 

 

4.2.2 Evaluation results 

The results of the comparison are presented in table 3, where it is shown which of the criteria are 

satisfied by each method. 

 

 

Table 3.  Comparison results 

Criteria 

Attack graph generation methods 

(Sheyner, 

Haines, Jha, 

Lippmann, & 

Wing, 2002 ) 

(Jajodia et al., 

2005; Ou & 

Singhal, 2011) 

(Kaynar & 

Sivrikaya, 

2016) 

(Bi, Han, & 

Wang, 2016 
 

Proposed 

method 

1 

(Attack Path 

Analysis) 
√ √ √ √ √ 

2 

(Vulnerability 

Chain 

Analysis) 

× √ √ × √ 

3 

(Integration of 

Open Source 

Information) 

× √ √ √ √ 

4 

(Integration of 

Crowd 

Sourcing 

Information) 

× × × × √ 

5 

(Collaboration 

Capabilities) 
× × √ × √ 

6 √ √ × × √ 



(Support tool) 

7 

(Tool 

availability) 
√ × × × √ 

8 

(Pruning of 

paths) 
× × √ √ √ 

9 

(Propagation 

length) 
× × × √ √ 

10 

(Attacker 

location) 
× √ √ √ √ 

11 

(Attacker 

capability) 
× √ √ √ √ 

12 

(Entry points) 
× × × × √ 

13 

(Target Points 
× × × × √ 

14 

(Satisfaction 

of EU 

policies) 

× × × × √ 

15 

(Can be used 

for risk 

assessment) 

× × √ × √ 

16 

(Vulnerability 

types) 
× √ √ √ √ 

17 

(Clarity and 

replication) 
× √ √ √ √ 

 

 

The main goal of the attack path discovery method is to identify the attack paths in specified network 

fragments of the maritime supply chain infrastructure and use them for risk management. 

Furthermore, the attack path discovery method includes the satisfaction of the following important 

components, that the related works fail to address as a whole:  

1. Capability and location of the attacker. 

2. Propagation length. 

3. Entry and target points. 

4. Pruning of paths 

5. Satisfaction of EU policies 

 

 

5 Attack prediction algorithm evaluation 

The maritime supply chain infrastructure it typically comprised of numerous assets that can be 

exploited to gain access and reach specific assets by popping from one to another. For the case study, 



we have used a snippet of data derived from the Valencia port IT infrastructure. In table 4 the data 

used show the common vulnerabilities between assets and their respective score. Assets 1, 2 and 3 are 

hardware assets, while the description column represents the vulnerable software asset that is installed 

on the respective hardware asset. Furthermore, the assets and attacks paths between them are a vital 

part of risk assessment. The following non-circular attack paths are present in the system: 

 

Asset1 → Asset2 

Asset2 → Asset3 

Asset2 → Asset1 

 

However, it should be noted that attack paths might vary according to the specific settings used, such 

as the propagation length, attacker location, capability, entry and target points. 

 

Table 4.  Common vulnerabilities 

Assets Description 
CVE 

2015-1769 

CVE 

2015-

2423 

CVE 

2015-2433 
CVE 

2015-2485 

Asset 1 

(Desktop 

PC) 

Windows 

10 Installed 

on Desktop 

PC 

10 2.9 2.9 10 

Asset 2 

(Laptop 

1) 

Windows 

10 Installed 

on Laptop 1 

10 2.9 2.9 10 

Asset 3 

(Laptop 

2) 

Windows 

10 Installed 

on Laptop 2 

10 2.9 2.9 - 

 

 

 

Then the administrator executed algorithm 2 to predict very high and high classification attacks. 

Moreover, for the case study we have assigned the minimum number of co-rated items to be 3 for 

very high classification and 2 for high classification. Thus, algorithm 2 classified: 

 

1. Asset1 → Asset2 as very high  

2. Asset2 → Asset1 as very high 

3. Asset1 → Asset3 as high 

4. Asset3 → Asset1 as high  

5. Asset2 → Asset3 as high 

6. Asset3 → Asset2 as high 

 

At the next step, the method checked for attack path relations between the assets and rearranged the 

classifications. Thus, the administrator received the following final predictions:  

 

1. Asset1 → Asset2 as very high 

2. Asset2 → Asset1 as very high 

3. Asset2 → Asset3 as very high 

4. Asset1 → Asset3 as high 

5. Asset3 → Asset1 as high 

6. Asset3 → Asset2 as high 

 

 

5.1 Expert validation 



For the validation of the attack prediction method, the opinions of five experts have been gathered for 

the validity of each of the six predictions and how these should be classified. The outcome of the 

attack prediction method has been validated separately by each of the experts, while they had access 

to the database with the assets and the CVE vulnerabilities. The experts were selected among people 

from the business partners and had to be experts in IT with internal knowledge of the system. 
 

The following comments where received by the experts: 

1. A path between assets with vulnerabilities that are the same or that belong to the same CWE 

category are more important and should be classified as very high. This validates the fact that 

paths 1 to 3 are classified as very high. 

2. Agreed that paths 4 to 6 are of high importance at least. 

 

All five experts that although it is important to predict moves within a network, is also important to 

know that a true expert will try to exploit every possible vulnerability and movie within after 

exploiting any other possible vulnerability, according to the type of access the attacker wants. 

Furthermore, the experts agreed that when an attacker exploits a certain vulnerability then at the next 

step they would try to exploit either the same vulnerability or a vulnerability of the same type. While, 

at the same time three out of the five experts mentioned that they would try to identify if they could 

exploit a vulnerability that would cause a higher damage to the system and then other that would 

cause lesser damage. Finally, all agreed it is vital to have a tool that can make importance predictions, 

then further evaluate with experts the predictions and provide mitigation solutions accordingly. 

 

  

6 Discussion 

Risk management is important for identifying risks in networks and propose mitigation solutions. 

Typically, risk management systems rely on the use of attack graph generation methods to identify 

attack paths and perform risk assessments. Although, in the literature there are several attack graph 

generation methods there aren’t any that satisfy plenty criteria to make the process straightforward 

and produce results of higher quality. In the literature there are long established methods such as the 

ones in (Sheyner et al., 2002) and (Jajodia et al., 2005) that can be used for attack graph generation. 

However, these methods being old and have been carefully examined in an experimental setting show 

that do not support several characteristics required for risk assessment such as pruning of paths and 

the location and capability of a potential attacker. On the other hand there are state-of-the-art methods 

such as the one in (Kaynar & Sivrikaya, 2016) and (Bi, Han, & Wang, 2016 ) that satisfy many more 

of the criteria necessary for risk assessment but several modifications would be necessary for them to 

be used. Thus, a new method for attack graph generation in terms of risk management was necessary 

and has been developed. The proposed attack graph generation method performs well in terms of 

performance as shown in the outputs in table 2 and in figure 1. Moreover, it satisfied all seventeen 

identified criteria, which will make the process of risk assessment and mitigation straightforward. 

Furthermore, cyber-attack prediction systems are important in risk management to provide mitigation 

solutions. To do that the identification of possible attack scenarios and providing defensive solutions 

for assets protection are the two most important parts. Furthermore, it is important for this to take 

place within a reasonable amount of time. It is shown that within a small amount of time the attack 

path discovery method delivers the non-circular attack paths between assets. Furthermore, at the next 

stage a classification list is created that provides a prediction list of attack movement between assets. 

For example, the likelihood that an attacker who gained access to asset 1 to explore the possibility of 

gaining access to asset 4 is higher when compared to gaining access to either asset 2 or asset 3. 

However, the possibility of common vulnerabilities receiving different scores in different assets 

should be further exploited since this will result in different classification scales. 
 

 

7. Conclusions and future work 

Recommender systems have been used extensively in various on-line services for product or service 

recommendation. However, until this point the use of such systems for predicting cyber-attacks has 

not been explored. In this paper we provide an in depth analysis of why cyber-attack prediction is 



important and how attack graph analysis can be combined with a collaborative filtering based 

approach to predict attacks within a risk management system. The proposed method combines attack 

graph analysis and recommendation technologies. Initially, a network is analyzed and a graph 

containing relevant attack paths is produced and on the next step multi-level collaborative filtering is 

used to predict how an attacker could move after access is gained to any of the assets. Furthermore, 

both parts of the proposed method have been evaluated for performance and quality. While, the 

method is practical, it could become more effective if certain aspects are extended, thus in the future 

we aim to investigate the following research directions:  
Path length recommendation. We aim to apply recommendation techniques to dynamically identify 

the length of the path that should be searched, thus making the attack path discovery process faster. 
Cyber-attack prediction. We aim to further develop our recommendation based attack prediction 

algorithm using classification methods such as Naïve Bayes and random forests. 
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Appendix A Evaluation criteria 
 

 

1. Attack Path Analysis. 
➢ This describes the capacity of the evaluated method to identify and analyses different attack 

paths. We are distinguishing the following main types. 
 

2. Vulnerability Chain Analysis. 
➢ This describes the capacity of the methods to identify chains of sequential vulnerabilities on 

different assets and include them into the risk analysis. We are distinguishing the following 

main types. 
 

3. Integration of Open Source Information. 
➢ This describes the capacity of the evaluated method to retrieve and integrated information 

coming from openly accessible sources of information (e.g., open source databases). 
 

4. Integration of Crowd Sourcing Information. 
➢ This describes the capacity of the evaluated method to retrieve and integrated information 

coming from crowd sourcing (e.g., technical forums). 
 

5. Collaboration Capabilities. 
➢ This describes the capacity of the evaluated method to enable and utilize the collaboration of 

several users in the risk analysis or risk management process. 
 

6. Supporting tool. 
➢ If there is a tool for providing a visual representation or any other relevant form of the results. 
 

7. Tool availability. 
➢ If the tool is available to the public to download, use or modify. 

 

8. Pruning of paths. 
➢ Pruning of paths makes algorithm more efficient. The algorithm can cut paths that either not 

important or fall in a category that we are not interested in, such as networked attacks. 
 

9. Propagation length. 
➢ The propagation length can be specified. The user should be able to enter the length that a 

potential attacker could reach after gaining access to an entry asset. 
 

10. Attacker location. 



➢ The location of the attacker can be specified. The location of the attacker can be specified, 

and it should be either local or networked. 
 

11. Attacker capability. 
➢ The capability of the attacker can be specified. The capability should be specified in terms of 

high, medium, low or similar. 
 

12. Entry points. 
➢ The entry assets can be specified, which helps to search on specific network parts for 

problems. 
 

13. Target points. 
 The target assets can be specified, which helps to search on specific network parts for 

problems. 
 

14. Satisfaction of EU policies. 
➢ EU maritime supply chain policies are satisfied. 

 

15. Can be used for risk assessment. 
➢ This describes the applicability of the evaluated method for the maritime supply chain risk 

assessment area. 
 

16. Vulnerability types. 
➢ The types and the categories of the vulnerabilities can be specified within the settings of the 

algorithm. 
 

17. Clarity and replication. 
➢ The algorithm is presented in a manner that it makes it easy to replicate or extend. 

 


