3,403 research outputs found

    Interdisciplinary research on the application of ERTS-1 data to the regional land use planning process

    Get PDF
    The author has identified the following significant results. Although the degree to which ERTS-1 imagery can satisfy regional land use planning data needs is not yet known, it appears to offer means by which the data acquisition process can be immeasurably improved. The initial experiences of an interdisciplinary group attempting to formulate ways of analyzing the effectiveness of ERTS-1 imagery as a base for environmental monitoring and the resolution of regional land allocation problems are documented. Application of imagery to the regional planning process consists of utilizing representative geographical regions within the state of Wisconsin. Because of the need to describe and depict regional resource complexity in an interrelatable state, certain resources within the geographical regions have been inventoried and stored in a two-dimensional computer-based map form. Computer oriented processes were developed to provide for the economical storage, analysis, and spatial display of natural and cultural data for regional land use planning purposes. The authors are optimistic that the imagery will provide revelant data for land use decision making at regional levels

    The use of ERTS-1 data for the inventory of critical land resources for regional land use planning

    Get PDF
    Computer-generated spatial and statistical comparisons of critical land resource data derived from conventional sources, RB-57 photographs, and ERTS images, for an eastern Wisconsin test site, suggest that certain critical land resource data can be mapped from ERTS images on a statewide basis. This paper presents one of the biotic resources, wetlands, as an example of the use of ERTS imagery to inventory land resources

    Pulmonary Hypertension Related to Left-Sided Cardiac Pathology

    Get PDF
    Pulmonary hypertension (PH) is the end result of a variety of diverse pathologic processes. The chronic elevation in pulmonary artery pressure often leads to right ventricular pressure overload and subsequent right ventricular failure. In patients with left-sided cardiac disease, PH is quite common and associated with increased morbidity and mortality. This article will review the literature as it pertains to the epidemiology, pathogenesis, and diagnosis of PH related to aortic valve disease, mitral valve disease, left ventricular systolic and diastolic dysfunction, and pulmonary veno-occlusive disease. Moreover, therapeutic strategies, which focus on treating the underlying cardiac pathology will be discussed

    Gibbs' paradox and black-hole entropy

    Full text link
    In statistical mechanics Gibbs' paradox is avoided if the particles of a gas are assumed to be indistinguishable. The resulting entropy then agrees with the empirically tested thermodynamic entropy up to a term proportional to the logarithm of the particle number. We discuss here how analogous situations arise in the statistical foundation of black-hole entropy. Depending on the underlying approach to quantum gravity, the fundamental objects to be counted have to be assumed indistinguishable or not in order to arrive at the Bekenstein--Hawking entropy. We also show that the logarithmic corrections to this entropy, including their signs, can be understood along the lines of standard statistical mechanics. We illustrate the general concepts within the area quantization model of Bekenstein and Mukhanov.Comment: Contribution to Mashhoon festschrift, 13 pages, 4 figure

    Evolutionary quantum cosmology in a gauge-fixed picture

    Full text link
    We study the classical and quantum models of a flat Friedmann-Robertson-Walker (FRW) space-time, coupled to a perfect fluid, in the context of the consensus and a gauge-fixed Lagrangian frameworks. It is shown that, either in the usual or in the gauge-fixed actions, the evolution of the universe based on the classical cosmology represents a late time power law expansion, coming from a big-bang singularity in which the scale factor goes to zero for the standard matter, and tending towards a big-rip singularity in which the scale factor diverges for the phantom fluid. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions in the corresponding minisuperspace. Using a gauge-fixed (reduced) Lagrangian, we show that, it may lead to a Schr\"{o}dinger equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the time dependent wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.Comment: 15 pages, 10 figures, typos corrected, Refs. adde

    Ontology-Based Production Simulation with OntologySim

    Get PDF
    Imagine the possibility to save a simulation at any time, modify or analyze it, and restart again with exactly the same state. The conceptualization and its concrete manifestation in the implementation OntologySim is demonstrated in this paper. The presented approach of a fully ontology-based simulation can solve current challenges in modeling and simulation in production science. Due to the individualization and customization of products and the resulting increase in complexity of production, a need for flexibly adaptable simulations arises. This need is exemplified in the trend towards Digital Twins and Digital Shadows. Their application to production systems, against the background of an ever increasing speed of change in such systems, is arduous. Moreover, missing understandability and human interpretability of current approaches hinders successful, goal oriented applications. The OntologySim can help solving this challenge by providing the ability to generate truly cyber physical systems, both interlocked with reality and providing a simulation framework. In a nutshell, this paper presents a discrete-event-based open-source simulation using multi-agency and ontology

    Magnetic structure of Cd-doped CeCoIn5

    Full text link
    The heavy fermion superconductor CeCoIn5 is believed to be close to a magnetic instability, but no static magnetic order has been found. Cadmium doping on the In-site shifts the balance between superconductivity and antiferromagnetism to the latter with an extended concentration range where both types of order coexist at low temperatures. We investigated the magnetic structure of nominally 10% Cd-doped CeCoIn5, being antiferromagnetically ordered below T_N=3 K and superconducting below T_c=1.3 K, by elastic neutron scattering. Magnetic intensity was observed only at the ordering wave vector Q_AF = (1/2,1/2,1/2) commensurate with the crystal lattice. Upon entering the superconducting state the magnetic intensity seems to change only little. The commensurate magnetic ordering in CeCo(In1-xCdx)5 is in contrast to the incommensurate antiferromagnetic ordering observed in the closely related compound CeRhIn5. Our results give new insights in the interplay between superconductivity and magnetism in the family of CeTIn5 (T=Co, Rh, and Ir) based compounds.Comment: 4 pages, 4 figure

    Iso-spectral potential and inflationary quantum cosmology

    Full text link
    Using the factorization approach of quantum mechanics, we obtain a family of isospectral scalar potentials for power law inflationary cosmology. The construction is based on a scattering Wheeler-DeWitt solution. These iso-spectrals have new features, they give a mechanism to end inflation, as well as the possibility to have new inflationary epochs. The procedure can be extended to other cosmological models.Comment: 14 pages, 5 figure

    Decoherence: Concepts and Examples

    Get PDF
    We give a pedagogical introduction to the process of decoherence - the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in the Proceedings of the 10th Born Symposiu
    corecore