friried applied
e sciences

Article

Ontology-Based Production Simulation with OntologySim

Marvin Carl May *7, Lars Kiefer, Andreas Kuhnle

check for
updates

Citation: May, M.C.; Kiefer, L.;
Kuhnle, A.; Lanza, G. Ontology-
Based Production Simulation with
OntologySim. Appl. Sci. 2022, 12,
1608. https://doi.org/
10.3390/app12031608

Academic Editors: Roque Calvo, José
A. Yagué-Fabra and Guido Tosello

Received: 4 January 2022
Accepted: 26 January 2022
Published: 3 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Gisela Lanza

whbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12,
76131 Karlsruhe, Germany; uufrm@student kit.edu (L.K.); andreaskuhnle@t-online.de (A K.);
gisela.lanza@kit.edu (G.L.)

* Correspondence: marvin.may@kit.edu; Tel.: +49-1523-950-2624

Abstract: Imagine the possibility to save a simulation at any time, modify or analyze it, and restart
again with exactly the same state. The conceptualization and its concrete manifestation in the
implementation OntologySim is demonstrated in this paper. The presented approach of a fully
ontology-based simulation can solve current challenges in modeling and simulation in production
science. Due to the individualization and customization of products and the resulting increase in
complexity of production, a need for flexibly adaptable simulations arises. This need is exemplified
in the trend towards Digital Twins and Digital Shadows. Their application to production systems,
against the background of an ever increasing speed of change in such systems, is arduous. Moreover,
missing understandability and human interpretability of current approaches hinders successful, goal
oriented applications. The OntologySim can help solving this challenge by providing the ability
to generate truly cyber physical systems, both interlocked with reality and providing a simulation
framework. In a nutshell, this paper presents a discrete-event-based open-source simulation using
multi-agency and ontology.

Keywords: ontology; production simulation; multi-agent; digital twin

1. Introduction

Product differentiation and customer satisfaction today demonstrate a shift from a
technical product focus towards customized, unique products. Increasing this product
individualization leads to changes and increases in the complexity of production systems
and amplifies the necessity for more flexible production systems [1,2]. Changes in produc-
tion directly affect both modeling and the simulation of production systems, as these are
carried out with the purpose of providing analyses and insights into the up-to-the-minute,
real production system [3]. Most notably, to provide insights into complex systems and
make decisions, for instance, regarding production changes [4]. To meet this new demand
for flexibility of production system simulations [3], this paper presents an ontology-based
simulation enabling the transfer of ontology advantages to simulation. The ontology’s
ability to dynamically map multi-dimensionality representations [5] offers new possibilities
for simulation [6]. In this paper, the conceptualization of a simulation based on a knowl-
edge graph as an instantiated ontology is presented. This is extended by introduction of
the manifestation, the Owlready [7]-based open source solution OntologySim, which fully
integrates an ontology into the simulation and offers a visualization via web development.
The multi-agent-based OntologySim, thus, provides an ideal basis for the application of
a digital twin. This research aims to present a combination of ontology with manufactur-
ing simulation, which is available as an open-source solution to the general public and
is distinguished from previous solutions by its flexibility and storability.A digital twin,
as an up-to-the-minute representation of the real system [3], is instantiated based on the
OntologySim as a digital master. Hence, the current production system shall be mapped
in detail to the simulation, the ontology-based model that is both describing the state
as a knowledge graph and generally modeling the ontological structure of the regarded

Appl. Sci. 2022, 12, 1608. https:/ /doi.org/10.3390/app12031608

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031608
https://doi.org/10.3390/app12031608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9361-6685
https://orcid.org/0000-0001-7380-7276
https://orcid.org/0000-0002-0481-4613
https://doi.org/10.3390/app12031608
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031608?type=check_update&version=2

Appl. Sci. 2022,12, 1608

20f22

system, as shown in Figure 1. The underlying concept of this storable and expandable
ontology-based simulation is discussed in more detail in Section 4.1.

Reality Simulation
|§,§gent 1 ||§Ag§ent 2 ||§Age2t 3 ||§Agen§ N
machine [@Simulation kernel
m3ax TRy
= o Mapping
| reality to

b simulation

transporter
=

product [<0

Production)

Figure 1. Outline of an ontology-based simulation model.

The paper is organized as follows. In Section 2, Foundation, the terms ontology and
simulation are introduced. Section 3, Related Work, categorizes existing simulations and
ontology-based simulations in the realm of production and beyond. In Section 4, Proposed
Ontology-based Simulation, the unique features of an ontology-based simulation approach
are presented and extended in Sections 5-7, introducing the manifestation OntologySim
and the individual components and functionalities in more detail. This paper finishes with
a discussion in Section 8 and a Summary and Outlook in Section 9.

2. Foundation

Given the novelty of the approach of using ontologies as means for simulating produc-
tion systems and the necessity to elaborate both topics individually, this section presents an
introduction to ontologies in Section 2.1, classical simulation in the context of production
systems in Section 2.2, and a delimitation of simulations based on an ontology in Section 2.3.

2.1. Ontology

The term ontology was initially coined in philosophy and describes the semantic
representation of existence. For today’s problems, the term ontology is often associated
with the term knowledge-base [8]. For the exact definitions of an ontology, there are
multiple versions available, but, for this application, the following definition is quite
appropriate [9]:

The formal description of an ontology is

O = (C,R, A, Top),

where C is the set of all concepts, R the set of all assertions, and A the set of all axioms. Top
defines the top level of the hierarchy. R contains the two subsets H and N, where H is the
“set of all assertions in which the relation is a taxonomic relation” [9], and N “a set of all
assertions in which the relation is a non-taxonomic relation” [9]. An instantiated ontology
can best described with the term knowledge graph, where concepts refer to vertices, and
relations refer to assertions that signify the type and structure of the relation between
two concepts.

The strengths of an ontology compared to object-oriented languages (OOL) are “reuse-
ability, interoperability, flexibility, consistency and quality checking and reasoning” [10]. In
the field of OOL, there are only UML diagrams that offer a similarly good basis for reuse
and interoperability. However, implemented applications are often incompatible, even if
stated with the same UML diagram. Furthermore, reasoning, by design achievable with
ontologies, offers classification, consistency checking, and knowledge extraction, which
can only be achieved with significantly more effort in OOL [10].

Appl. Sci. 2022,12, 1608

30f22

To take full advantage of an ontology, five design principles have been established [8].
These are named and briefly explained below:

e Clarity pursues the goal to design definitions objectively and formally and to prefer
fully consistent definitions whenever possible.

e Coherence is the property of being logical and consistent.

* Extendability allows the ontology to be extended or modified regarding new relations
and vocabularies.

* Minimal encoding bias means that the chosen representation goes beyond the current
implementation to ensure knowledge-sharing over the current use-case.

* Minimal ontological commitment: An ontology should have few requirements and re-
strictions on the modeled world to represent specialized and individual circumstances.

These design principles are also applied to the OntologySim, with a focus on “minimal
ontological commitment” and “minimal encoding bias”. The goal of the OntologySim is to
represent diverse production types and characteristics in the best possible way to be able
to map complex and individualized production plants with all their characteristics to an
ontology. One classification of ontologies is based on a three-step approach that classifies an
ontology based on the scope of concepts that are included: (1) general ontologies, including
cross-divisional concepts, (2) top level ontologies, focused on a particular application, and
(3) domain ontologies, that translate known class and data models [11]. Another classifica-
tion can be based on the purpose of an ontology, which can be limited to communication
enablers, where agents derive their communication convention from a commonly accepted
ontology, the purpose of automatic reasoning to identify new concepts and relations or the
purpose of representation through knowledge reusability [12].

Typical languages for the description and exchange of ontologies in the wake of
the Semantic Web Initiative [13] are the Resource Description Framework (RDF), initially
developed to describe metadata by describing resources with characteristics and links to
other resources, and the Extensible Markup Language (XML), developed to annotate and
describe data and documents. Their power can be vastly increased by using schemata, i.e.,
ontology languages, such as the Resource Description Framework Schema (RDEFS), a set
theory-based formalism for ontologies, and the Web Ontology Language (OWL) family,
based on description logic and set theory [7,14].

In the following, two classification approaches for ontologies are presented in more
detail, firstly, the distinction between static versus dynamic ontologies [15]. Secondly,
from a programming perspective, the distinction between the SPARQL Protocol And RDF
Query Language (SPARQL), a graph-based query language for the Web Ontology Language
(OWL) [16], and ontology-oriented programming for OWL [7,17], as well as traditional
Application Programming Interfaces (API), is made.

A static ontology assumes that the world is static, so only queries are possible, and
“inference, classification or dynamic class creation” are not allowed [17]. Examples of static
ontologies are given by Kalyanpur et al. [18] and Goldman [19]. Dynamic ontologies allow
the creation of classes and instances during runtime [17]. They often use concepts that
include state, state transition, and process and are inspired by finite state machines and
Petri nets [10].

An overview of the classification of an ontology is visualized in Figure 2.

In the structure and access of an ontology, three types have been established, SPARQL,
the traditional OWL API, and object-oriented OWL. The differences between the two types
are explained using the Java OWL API and Owlready. SPARQL will not be discussed
further in the following because of the following significant disadvantages. SPARQL is an
RDF query language based on SQL (Structured Query Language), but, since it is not based
on OWL and queries have to be written for each access [17,20], it is significantly slower
than the alternatives. OWL API and Owlready use the OWL2 standard based on the W3C
specification [21]. OWL2 is an extension to OWL concerning “richer data types, data ranges,
qualified cardinality restrictions, asymmetric, reflexive, and disjoint properties” [21]. The
RDF (Resource Description Framework) sets the standard grammar for formal “association

Appl. Sci. 2022,12, 1608

4 0f22

among resources” [10] and is based on an XML schema [10]. OWL extends the RDF
concerning the ”ability to express more information about the characteristics of properties
and to define classes by grouping those instances that meet these characteristics” [10].

types of
Design principles Classification approaches ontologies

Clarity Changeability
Stati D i
o ynamie traditional AP
Coherence s il
Document overview ava

Extendibilit X Ontologies . _
Y Querying: QWL + OWL?2 Rules: SWRL SPARQL
— : SPARQL ,
Minimal encoding Taxonomies: RDFS ontology-oriented
S Data interchange: RDF programming
Minimal ontological Syntax: XML Owlready

commitment

Figure 2. Summary of the OntologySim foundation, based on [8,10].

Traditional APIs define unified methods and classes to modify and customize the
ontology. The Java-based OWL API allows loading and saving of different syntaxes, but
with an independent internal syntax. The OWL API is widely used in Protégé-4 [22],
SWOOP [23], and NeOnToolkit [24,25], which are tools capable of modeling ontologies,
sometimes even graphically.

In ontology-oriented programming, the entities of the ontology classes, properties,
and individuals are considered as classes, attributes, and instances in the object model [17].
The basic structure of Owlready is based on a SQLite3 database, which stores the opti-
mized RDF quadstore [7]. If required, the ontology entities are loaded in Python, and a
modification of the Python objects leads to an automatic update of the quadstore [7]. The
advantages of ontology-oriented programming are lower programming effort and easy
readability of the code [17]. Furthermore, Owlready combines the agility of object-oriented
programming with the expressiveness of an ontology with good access speeds through
relational databases [26]. These reasons were decisive for the use of Owlready?2.

A comparison of the resource efficiency between OWL API and Owlready shows that
Owlready requires less memory and has faster loading times than the OWL API for smaller
applications (with about 60,000 classes). For larger ontologies (5 million triples), the loading
time for OWL API is 100% faster. In terms of listening time, OWL API is significantly faster,
although the gap increases exponentially with larger applications [17]. For this reason,
when designing an ontology, care must be taken to ensure that the ontology remains
compact, as the resource overhead increases exponentially, especially for listening for
very large ontologies. For the application of the simulation in the presented OntologySim
framework, for instance, with 5 machines, Owlready has 73 classes and 1225 objects, and it,
thus, uses significantly fewer classes and edges than the benchmark test. For this reason,
the problem regarding large, slow ontologies is of less relevance in this case. Owlready
was introduced in 2017 and has been successfully used in biomedical informatics [17], for
football games [27], and production simulation [28]. However, the differences between
Liu [28] and OntologySim are discussed in Section 3.

2.2. Simulation

The term simulation refers to mapping a system to analyze its dynamic processes
in a simplified replica (of the target system) and to obtain transferable knowledge [29].
When modeling the simulation, different approaches can be used either individually or in
combination. There is a distinction between Discrete Event Simulation (DES), which has
event-based step sizes, System Dynamics, which has a top-down approach over system
changes per time, and Agent-based Simulation, which executes decision processes based on

Appl. Sci. 2022,12, 1608

50f22

agents. Agent-based simulation can be further divided into multi-agent-based and single
agent-based systems [30]. For the application in complex systems, multi-agent-based can be
advantageous because of the decentralized and robust structure [31-33]. The OntologySim
is a discrete event-based, multi-agent system. The exact classification of the simulation is
discussed in Section 4.

Besides the modeling type, a simulation consists of the following components ac-
cording to the VDI3633 [29]: a simulation kernel, data management (see Figure 3), user
interface, and interfaces to external databases. The simulation kernel contains the model
world and necessary elements, particularly events to ensure automatic execution [29]. The
last level, the interfaces to external databases, is not included in this simulation because the
OntologySim attempts to represent as many applications as possible, and this interlocking
with a particular external database conflicts with the many individual external databases
prevailing in real production systems. Hence, a config file or owl file specifying the required
information to be extracted before or while execution and API interfaces serve as external
interfaces. For more detail, the reader is referred to Section 7.

Legend

System _ Not included

Figure 3. Components of the OntologySim simulation tool (DES), based on [29].

2.3. Term Ontology-Based Simulation

Ontology-based simulation as a term is used differently throughout the literature as the
degree of ontology application is not clearly defined. The proposed classification scheme,
as shown in Figure 4, is based on References [30,34] and has been adapted and integrated
with respect to simulations based on an ontology. The Ontology Integration Level (OIL) for
simulations continuously increases from production capacity to ontologies that store all
subcategories and simulation specifications. It allows the classification of ontologies that
are interwoven with an ontology-based simulation in the area of production simulations.

Appl. Sci. 2022,12, 1608

6 of 22

fully What are the meta parameters
for the simulation
Whats the last and next
simulation step

. . How is the product
Lvi3 Product specification defined? P

Which processes can be
done with the resources

ontology-based

Lvi2 Process specification

Which resources

party LvI1 Production capacity are available?

Figure 4. Examining the Ontology Integration Level for ontology-based production simulation.

The definition of each level is as follows:

e Loll: Production capacity: The ontology contains information about the capacity and
structure of the ontology, such as machines, transporters, and queues.

* Lol2: Process specification: The next level adds information regarding processes, setup
behavior and resource change.

e Lol3: Product specification: An ontology enables products to be produced in simula-
tion. This means that production plans are included in the ontology and the current
processing step of the product is known in the ontology at any time.

e Lul4: Event & history specification: Events and data from the past lay the foundation for
processes and allow the determination of the next simulation step.

* Lol5: Simulation specification: The highest ontology integration level contains all
information of the previous levels and focuses on all further necessary information,
such as current time steps or work orders, to be contained in the ontology. Fully
ontology-based simulations allow saving the ontology, and, thus, the simulation core
and current status, at any time without information loss. This is possible when both
the data management and the simulation kernel are integrated into the ontology.

According to this definition, OntologySim is a fully ontology-based simulation in
ontology integration level 5.

3. Related Work

As introduced in Section 2.3, different integration levels for ontologies in simulation
and production exist. The literature in this domain is reviewed and extended with other
approaches of ontology-based simulations in Section 3.1. Then, available simulations for
production systems are reviewed in Section 3.2.

3.1. Literature Review

In the literature, there are many approaches to integrate ontologies in production and
simulation. The majority of approaches to date focus on using the ontology as a memory
or database to build a simulation model. This is similar to handling the simulation data
management with the help of an ontology, yet, the simulation itself remains unchanged.
Based on a grounded theory literature review [35], a large set of papers dealing with both
simulation and ontology or both digital twin and ontology in the domain of production
research were identified. By manual analysis a total of 20 papers, the most relevant research
approaches were selected (cf. Table 1), with priority given to approaches with higher
Ontology Integration Levels and the requirement of including ontologies from a research
perspective in production organization. In general, the existing approaches can be clustered
as follows:

* Concepts/schemata for production simulation:
This category is characterized by the fact that schemes and concepts for a simulation
are presented, but the active use has not yet been implemented or has only been
carried out for an example case. Some of the concepts differ greatly in scope and

Appl. Sci. 2022,12, 1608

7 of 22

structure of the ontology. Thus, multi-agent approaches were designed, such as
that by Karageorgos et al. [36], who define an agent-based approach to support
logistics and production planning; and Ménch and Stehli [37], who store data based
on domain-related predicates, such as machine structure and task-related predicates,
such as scheduling. Additionally, there are concepts for the description of the factory
layout [38] by ontological means. Furthermore, there are databases, such as ONKI [39],
available, which hold production data sets and ontology schemata for production.
Real world application (CPS, MES):

These ontology approaches are characterized by the fact that a virtual representation
of a production plant and a Manufacturing Execution System (MES) is extended by an
ontology to maintain flexibility. In these approaches, the ontology often serves as a
classic knowledge database. Examples are the use of ontologies for MES and OPC-UA
interfaces [40] and a digital twin for a Cyber-physical Production system (CPS) [28].
A different approach is followed by the virtual factory data model presented by
Terkaj [41], which aims at representing factory objects, i.e., from products to machines,
virtually, in a static way.

External data source to facilitate easier production simulation start:

These papers pursue the integration of different external data sources to create a
uniform simulation data model through an ontology. It is noticeable for this type
of concept that multiple ontologies are used for modeling [42—44]. The simulation
models are either converted into executable models, as in Silver et al. [42], or the
ontology serves as a knowledge database adjunct to the simulation model [43,44].
Benjamin et al. [43] introduce an ontology-driven framework based on scheduling,
simulation and optimization ontology. Du et al. [44] implement a framework, where
multiple databases are integrated into multiple ontologies and then combined to one
core ontology model. A hybrid approach focuses on modeling external data sources, a
static virtual model of the factory and its history, presented by Terkaj and Urgo [45],
likewise uses ontologies and extends so far static representations with the system’s
history and evolution. Thus, these can be classified as a digital shadow [3]. An
extension of this approach is described by Terkaj et al. [46], who use this continuously
synchronized, ontology-based virtual model to enable “in situ” simulation of future
system behavior. Hence, the approach aims at enabling a foresighted digital twin [3].
Fully ontology-based simulations:

A similar approach to the OntologySim is only provided by the paper of
Warden et al. [47]. Here, an attempt was made to create a simulation for trans-
port logistics utilizing several ontologies, which were divided into different layers.
The goals regarding ”scalable, portable and reusable domain models [...] fell short [...]
and turned out to yield more pain than gain” [47].

The categorization of different literature examples is presented in Table 1.

Appl. Sci. 2022,12, 1608

8 of 22

Table 1. Literature review.

Ontology Real
System World Simulation
n
3]
2
g
3
—_ (7]
n >
& » g
% < E 3
g % g & A
5 o v 9 = o
E . &» 5 g & g &
s 3 I g 2 cz‘ X 0w
E 2 S % &8 & 4 U:D 5
£ 2 £ 8 & 5 8 £ £ _ g
£ S 8 § £ & 3 S & £
e oD () > = = (3] > - (o]
B &£ 2 8 ® = A~ & &8 & N
S 4 & S8 =2 ¢ L 5 S ¥ =
S £ £ 5 2 5 2 E s § g
E 2 2 E & ¥ B & 2 £ 2
Approach by © 2 =2 O <« @m O =2 O £ 5% MainGoal
Concepts / schemata for production simulation
Terkaj and Urgo [45] e O O e e @@ O O 4 0O O Performance
Terkaj et al. [41] ®e O O e O O O O 3 0O O Virtualmodel
Viljanen et al. [39] ®e O O O O O O O - O O Database
Monch and Stehli [37] e ¢ O e ¢ O O O 3 O O MAS
Cheng et al. [6] ®e € O O O O O O 3 0O O Concept
Scholzand Schabus[38] @€ O O e O O O O 1 O O Schema
Gurjanov et al. [48] ®e O O O O O O O 2 0O O Product
Karageorgos et al. [36] e @€ O e O O O O 3 O O MAS
Fumagalli et al. [49] ®e O O e O O O © 3 O O MES
Mazzola et al. [50] e O O O O e O O 2 0O O Concept
Guizzardi and Wagner [51]l®@ O O O O O O O 4 O O DES
External data source to facilitate easier production simulation start
Du et al. [44] e ¢ ¢ ¢ ¢ ¢ O O 3 O @ Anylogic
Terkaj et al. [46] ® O O e e @ O O 4 O @ Speed
Benjamin et al. [43] ® 6 6 o o ¢ O O 3 0O O Framework
Silver et al. [42] ®e O ¢ O e e O O 3 0O O Parsing
Real world application (CPS, MES)
Liu et al. [28] e O O e O O e e 3 O e digitaltwin
Ansari et al. [52] ®e O O e e O e O 2 0O O Problem
Katti et al. [40] ®e O O e O O e e 2 O O OPCUA
Chen and Tu [53] e O O e O O © ©o© 1 O e CpS
Fully ontology-based simulations
Warden et al. [47] ® ¢ O e ¢ O O O 4 O O Scheduling

Legend: @ regarded © rudimentary regarded O not regarded

All in all, there is still a research gap regarding fully ontology-based simulations
that do not only use the ontology as a data storage. The use of the ontology as a control
element, event handler, and data base has been little considered so far. However, promising
advantages of continuing the ontology integration are flexibility [47], correct data through
interlinkage with the real system [28], and extendability [45] among others. Thus, the need
for researching and introducing concepts on Ontology Integration Level 5 arises.

3.2. Simulation Programs

Table 2 compares existing simulation systems on the market. For the comparison, a
Python-based discrete-event simulation and, for simplification, two widely used commer-
cial products, AnyLogic and Siemens Plant Simulation (PLM), are used. The selection of

Appl. Sci. 2022,12, 1608

9of22

the 3 simulation tools from the available simulation is based on the similar use in the pro-
duction environment and the high popularity. Given the regarded scope of the comparison,
commercial alternatives, such as Arena- or Petri net-based production system simulation,
do not differ greatly. While commercial applications include visualizations, open source
approaches, such as SimPy [54,55], seldom provide this kind of user-friendliness. Ease
of use and first start is typically provided by graphical editors [56] or configurations,
thus providing little flexibility. Furthermore, given DES cannot be interrupted, the sim-
ulation core changed, and then continued, a feature dubbed intervention. Furthermore,
KPIs are typically self defined or calculated, omitting international standards, such as the
ISO-22400-2:2014 standard [57].

Table 2. Comparison of a selection of existing simulation applications.

User-Friendliness Availability Modularity

g g =
£ 0F ¢ g : £ 2
s 2 ke 3 3 & =
e S @) c 2 =
2 g k: > g 2 g
Simulation > = = P4 o = =
SimPy [54] O © ® © ® @) ©
AnyLogic [56] @ © o © O O ©
Siemens PLM (© [] © (@] O ©

Legend: @ implemented © partly implemented O not possible

In comparison to traditional approaches, the main advantages of the OntologySim lie
in the combination of a storable, changeable DES on open source basis with visualizations.
In the following chapter, the structure and advantages of the OntologySim are explained in
more detail.

4. Proposed Ontology-Based Simulation

In this chapter, the OntologySim idea is explained in more detail. Furthermore, the
OnologySim is classified according to VDI 3633 [29], and the unique selling propositions,
that fit the previously outlined research gaps, are presented.

4.1. OntologySim Conceptualization

The main requirement in the conception and implementation of OntoloySim is to
implement a flexible, modular simulation that can be saved and reloaded at any time.
The process of changing and loading the simulation enables a direct linkage and runtime
adjustement to the reality, which is shown graphically in Figure 5. Thereby, OntologySim
enables a truly interlinked Digital Twin.

> aa d > c?

Start of Simulation Save of Loading of Continuing
Simulation run simulation simulation simulation run
machine 1 machlne 1
* *Eﬁ% machine 3 = C.har;gte. of B \é__‘; machlne 3
3 simuiation
| A T
transporter 4« A trans orter
mﬁfj% machlne 2 New state
. /)
Somi Bt — i
..jTéﬁZ Maintaining the state Lo
m = ’
! ! Time

Figure 5. Main idea of OntologySim.

Appl. Sci. 2022,12, 1608

10 of 22

After configuration and the start of the simulation, the OntologySim can be saved
at any time, with or without interruption. Since large parts of the simulation core are
directly connected and modeled within the ontology and the fact that the ontology holds
all relevant information. After saving the ontology in an “owl” file, changes can be made
within or outside of the executable OntologySim, such as adding a machine or AGV
(Automated Guided Vehicle). Loading the ontology guarantees the seamless continuation
of the simulation at any time.

4.2. Unique Selling Proposition (USP)

Figure 6 summarizes the main points of differentiation from other simulations. The
individual contents of the framework are explained in more detail in the various chapters:
Sections 5-7.

Unique selling proposition and feature

Saving, Loading Extendable during

of Simulation simulation run
boc o Extendable open
[: : :] Generalisation B oo yrce application

L . Step wise going
@E% Iglzl il {{ back in simulation

Figure 6. Unique position of the simulation.

The USP is based on the following advantages over existing discrete-event simulations:

* Saving, Loading of Simulation:
Interrupting the simulation during runtime enables new use cases and possibilities,
which are shown in Figure 7. When saving the simulation, the current state of the
ontology is stored in a single OWL file. This saved data is sufficient to restart the
simulation, as all essential information is contained in the ontology. In particular, the
following new use cases are enabled:

— The stored image can be run on other computational units and enables the easy
extraction of information data.

- After saving a defined state, several strategies, multi-agents, etc., can simulate
different simulation runs, and the best agent configuration can be selected to
facilitate research in this domain [31,55,58].

- Furthermore, time saving is achieved because the initial run-up and warm-up
of a simulation into a static state can be skipped, as a static stimulation can be
loaded, that is “identical” to the real system state to increase inference accuracy
required for real-world use cases [59,60].

- Areal world digital twin is enabled, as up-to-the-minute virtual models can be
started with the exact same initial situation [3].

Appl. Sci. 2022,12, 1608

11 0f 22

Saving of
simulation

Swapping strategies

Changing of
simulation

— T

Loading of
> changed
imulatjon

Changing production

- Starting with
utiliziation of 80%
- no run in behavior

&9 x eg.
Ox x X, &
1;‘ — - sehecient
/=) T 5 =
SRR sRsRsR
Shortest ' A
FIFO queue 2 machines 3 machines
Preloading a simulation Enabling data transfer

e.g.
Making a
simulation state

I_I exportable

3 machines, Shortest 2 machines, Shortest

3 machines, FIFO
queue queue

Figure 7. Use cases for saving and loading simulation.

Extendable during simulation run:

Saving and loading the simulation provides the basis for the simulation to be extended
during a run. In addition to changing the strategy, adjustments can also be made to
the manufacturing system which affect resources, such as machines, transporters, or
processes. Thus, for example, transporters can be removed or added, or process times
can be changed. It is also possible to add data and information that is not needed
currently for the simulation. By adding supplementary nodes, it is possible to link
external (real-world) data or to model the current description in detail. An example
would be the addition of installation space sizes for the product, novel products added
to the portfolio [33], or changes in the shopfloor management, as well as increased
worker competencies [61].

Extendable open source application:

Another advantage compared to the majority of simulations reviewed in Section 3
is that OntologySim is implemented with the basic idea of being an open-source
publication and software. Thus, the focus of the implementation is to make the
simulation easily adaptable and to provide clearly defined and explained interfaces.
This makes it possible to simply extend the simulation with self-implemented agents
and access the ontology through standardized wrapper methods.

Generalization:

The interaction of the ontology and the Python modules enables a good generalization
of simulation models. It is possible to model different production systems, be it line
production, a workshop production or matrix production, or any combination. The
ontology can be extended and customized to meet specific requirements. This includes
the possible integration of information about tangible objects, such as products, intan-
gible information, such as production planning, and control organization [33,58], or
ever-changing, human-centered Industry 4.0 implementations [61].

Step wise going back in simulation:

Going back within a single simulation run in a step-by-step manner is another special
feature of the OntologySim. Going back enables a better analysis of the simulation
and increases the traceability and understanding of complex production systems [60].
This feature is made possible by the fact that, at any point in time, a defined state
is available, and the past events are stored. These two properties are sufficient to
recreate the past and explicitly analyze its states. By doing so, the analysis of “what-

Appl. Sci. 2022,12, 1608

12 of 22

if” scenarios within a single simulation run can be evaluated without the need to
instantiate many different simulations, for instance, for time-constraint adherence
predictions [59,60].
e Digital twin:

The OntologySim can ideally serve as a digital twin. It possesses the unique ability to
serve as digital twin, digital master, and, to some degree, digital shadow, all at once.
Starting from any current state in the real system, the ontology can be created and
updated externally, manually, or by connection to data sources, such as MES or ERP
systems. Then, an instantiation, or, in other terms, a simulation run, can be started
directly within the OntologySim framework. This enables increasing digital twin
capabilities for production systems [3].

4.3. Classification of simulation

This section classifies the simulation according to VDI3363 [29], as shown in Figure 8.
The OntologySim is a discrete event-based simulation. The event-based programming has
the advantage of simple implementation, high execution speed, and flexibility; for example,
one event can easily trigger several other events [54]. Furthermore, the OntologySim is a
multi-agent-based simulation. Each machine and transport unit represents an agent that
can be instantiated as to decide independently.

Category of VDI3633 Classification

Type of model Graphics-oriented Parameter-oriented Language-oriented
description

Type of data structure for predefined User-definable

model configuration

Type of internal time- Fixed-increment Event- Process Transaction flow
advance mechanism time advance scheduling interaction

Type of interaction interventions

possibilities during ti)r?ttgragtrig(r:\esslsl?b(lgs queries (possible to change the
run time model

Figure 8. Classification of simulation according to VDI3363 [29].

5. Design Principles for the OntologySim

The OntologySim concept and the structure of the developed ontology presented
below is intended to enable mapping diverse production systems, such as line production,
workshop production, and matrix production, efficiently, in a modular way. The basic
requirement for the OntologySim development is the ability to save the simulation state
at any time, without data loss, and the ability to restart the simulation using the saved
ontology. From this requirement follows that all entities have to be mapped in this ontology,
achieving Ontology Integration level (OIL) 5. Thus, not only machines and transporters
are stored in the ontology, but also set-up processes, defects and services, their statistics,
the production plan for all products, and relevant future and past events. The storage
of any entities in the ontology enables a high degree of flexibility since, on the one hand,
relationships from zero to n are possible, and, on the other hand, a high degree of detail
can be generated. Furthermore, the information and relationships within the ontology
are dynamically adapted. Each executed event or simulation step executes changes to
the ontology. Because past events are also stored in the ontology, it is possible to recreate
past states from the current state of the ontology. This past information is also seamlessly
available to enable machine learning-based production control, for instance, with reinforce-
ment learning [55,58]. The concept and functioning of the ontology are exemplified by the
entities Machine, Event, and Product type in the following.

Appl. Sci. 2022,12, 1608

13 of 22

5.1. Machine

The basic components of machines are queues, which are divided into different cate-
gories. One is the input and output queues, which serve as a buffer, and the “ProdQueue”,
in which products are processed. A queue can serve as both an input and output queue,
but not as a "ProdQueue” and an input or output queue at the same time. The next level is
the position, which serves as the interface to the products. Each position can be reserved in
advance by exactly one product. In addition to the queues, the set-up processes and pro-
duction processes are stored with respective distributions. The machine is also connected
to events, past events ("EventLogger”), and various defects and maintenance entities. The
exact configuration of a machine is always adapted to the individual use case so that, for
example, the number of queues and positions can be flexibly varied. A simplified machine
is visualized in Figure 9.

Example

Structure of one machine
m Defect

[Lcoation B nouaueue

OutputQueue ProdQueue

Product

ProductType

Product

‘ ProductType | ProductType ProductType
\ SetUp Distribution
SetUp

Distribution
ﬁ EventLogger

Figure 9. Concept of a machine in OntologySim.

5.2. Event

The states of the simulation are not controlled by state entities and are based solely
on events and the information stored within the ontology. The state of an entity, e.g., a
machine or transport unit, is defined by the currently valid and connected event. Each event
contains information about the start time, duration, and type of event and is connected to
the entities, which are influenced by the event. From this information, the state of each
entity can be extracted at any time. Events that lie in the future can also be generated.
However, the agents and control algorithms do not have access to the future events but
only see the current state to preserve comparability in respect to the real world. Creating
future events is useful for processing tasks at once in the simulation. For example, if the
task is to produce a product on a machine, then two events are created, one to change the
machine setup to the new process and the other to feed the product into the machine for
processing. This possibility facilitates the implementation of the simulation.

It is always possible to infer in both directions (bidirectionally) in the simulation.
This increases flexibility and allows easier access to entities. The disadvantage of this
is that more data is stored, which hurts performance. As shown by Reference [17], the
performance for compact ontologies is significantly better. For this reason, past events are
only made available in one direction, which has the great advantage that, when querying
the state and the next steps of a machine, only a few future events need to be queried,
and it is not necessary to iterate over all past and future events. Figure 10 illustrates the
differences between past and future events and their connectivity to entities.

Appl. Sci. 2022,12, 1608

14 of 22

Example of event concept

status future

type: .. type: .. type: process type: .. E o
time: 80 time: 95 Time:100 time: 102 | Ttme: 130
time_diff: .. [time_diff: .. [time_diff: .. | [time_diff: 2 time_diff: ..

time line

Figure 10. Explanation of the (semi-)bidirectional event-resource mapping.

5.3. Product Type

The mapping of product types and their current state is based on the structure of a
Petri net, which is a feasible representation, for instance, in disassembly [62]. The state node
in the ontology is equivalent to a place S, and the production process represents transitions
T. Each product type has a production plan with start and end nodes. The arrangement
and sequence of the process steps can be freely designed, as shown in Figure 11. The
individual products always refer to their current state. The Petri net-like structure offers the
advantages that different and complex production plans with many potential paths can be
stored and iterated through with high performance and that information can be extracted
quickly. For example, the calculation of the fastest path, the selection of the process with
the shortest machine queue, and the number of production steps still required is possible.
The graphic in Figure 11 shows a simple, yet relatively complex, production plan.

Simple production plan
Source Process 1 State 1 Process 2 Sink

More complex production plan
Source Process 1 State 1 Process 3
Process 4 Sink
Process 2 State 2
Process 5
Figure 11. Exemplary concept of product type.

An overview of the classes and relationships and more in-depth information on how
the ontology has been implemented in concrete terms are summarized in the ReadThe-
Docs documentation (https://ontologysim.readthedocs.io, accessed on 30 December 2021)
for the OntologySim [63]. The code for the frontend and for the simulation are both pub-
lished in two seperated github projects (ontologysim_react (https://github.com/larsKiefer/
ontologysim_react, accessed on accessed on 27 December 2021) [64], ontologysim (https:
//github.com/larsKiefer/ontologysim, accessed on 27 December 2021) [65]).

6. Procedure of OntologySim

Based on the simulation steps as shown in the VDI3363 [29] and the adjustments
regarding the application of an ontology, the following 4-stage pipeline was designed:
Configuration of the simulation, Reasoning /loading of the simulation, Running through
the simulation, Logging & storage of KPIs. The individual steps are briefly described below
and visualized in Figure 12.

https://ontologysim.readthedocs.io
https://github.com/larsKiefer/ontologysim_react
https://github.com/larsKiefer/ontologysim_react
https://github.com/larsKiefer/ontologysim
https://github.com/larsKiefer/ontologysim

Appl. Sci. 2022,12, 1608

15 of 22

| 2 @ e

[KO “
" e

Datsbase @)

csv 2
| APL-interface] | J
| - Simulation & { Owl-File and Config-File 2 ‘

- Fast forward and rewind APl-interf C
| step by step + HIDEEEE y ‘

- Visualization
- Live Event-Logger

| Visualization of configured &
simulation

interaction of
’Python Module @| ’FIask/Webserver Q_‘ |React/SimuIation <§>|

Figure 12. OntologySim pipeline.

6.1. Configuration of the Simulation (1)

The configuration of the simulation is provided via config-files, owl-files, or an API
interface. To simplify the configuration from lines to matrix production, different tem-
plates and examples can be used. Additionally, the OntologySim provides support for the
configuration by visualization means [64].

6.2. Reasoning/Loading of the Simulation (2)

When starting the simulation, the model is created in Owlready2, and the reasoning
is started [65]. For performance and resource efficiency reasons, the reasoning is only
carried out at the beginning. All changes are made via wrapper methods so that the model
remains consistent, and queries are executed directly on top of objects. This leads to a faster
simulation procedure. However, the ability to perform reasoning on this ontology during
or after simulation runs remains.

6.3. Running through the Simulation (3)

Running through the simulation offers two possibilities. One is the step-by-step run,
and the other is the direct run [64], which is used for a fast simulation execution. Running
through the simulation step-by-step allows you to go back and forth between simulation,
live display of KPIs and events, and visualization of the production. Furthermore, the
simulation can also be accessed via an API [63]; thus, the required data can be retrieved
at any time. The goal of the step-by-step process is to better understand and analyze the
decisions of the agents and algorithms in order to facilitate better algorithm or machine
learning model design to enable further studies into the explainability of such systems [55].

6.4. Logging & Storage of KPIs (4)

After the simulation run, all KPIs and events can be obtained either as CSV files or an
SQLite database [64,65]. The KPIs are based on the standard defined by Kang et al. [66]. For
each run, up to 22 KPIs for machines, 8 KPIs for transporters, 11 KPIs for products, 1 KPI for
queues, and 4 KPIs for the general simulation can be stored. There is one summary per KPI
and element (machine, transporter, queue) and one per time interval. The configuration
allows the time interval to be changed and KPIs to be added and removed.

7. Technical Description
7.1. Basic Building Block of the Ontologysim
The basis of the OntologySim is the Python library Owlready?2. The ontology frame-

work is used to store the data and the status of the production. A more detailed description
of how Owlready works can be found in Section 2.1 and References [17,26].

Appl. Sci. 2022,12, 1608

16 of 22

The structure of the OntologySim is shown in Figure 13 below. Around the entire
ontology, wrapper methods have been designed to standardize access to the ontology.
The search queries are realized via unique IDs and via iteration through the connections.
This approach has high-speed advantages over SPARQL and SWRL (Semantic Web Rule
Language). Building on top of the wrapper methods, simulation, loggers, agents, and KPI
modules are implemented. These modules form the basis for ontology-based simulation
and contain, in addition to the ontology, the core logic of the simulation. To start the
simulation, either config files or owl files are loaded or a request to the webserver is sent.
Nevertheless, the wrapper methods are generalized, so that only the config or owl is
required to instantiate a simulation run. The agent integration is structured in such a way
that standard agents, such as FIFO, Shortest Queue, etc., are pre-implemented, and their
programmed agents can be easily created via a predefined interface.

Based on the basic simulation, a web server is integrated, which enables more tar-
geted access to simulation data and lays the foundation for the visualization, as shown in
Figure 13. The designed APl interface is implemented with Flask, which is a stateful service
due to the discrete running simulations. The basic functions of the API are to call KPIs, log
data, and create and configure simulations. Together with the simulation module and the
web server, this forms the backend of the software structure [64,65]. A frontend Framework,
here React, is used for the visualization of the simulation. The data is retrieved from the
Flask web server using Ajax calls and stored in the Redux Store. The Redux Store serves as
the basis for displaying KPI diagrams, event logger tables, and simulations. The connection
between frontend and backend is enabled using AJAX calls.

& React / Simulation

Redux-Store Konva Recharts

i Request lI Response
Input files | & Python runtime Output

Open-source package f
. options
I8 {_ Flask / Webserver P

config files| | Simulation module H > |svo
tdll Simulation Agents KPI kpi plots
simulation -
Wrapper methods .csv
Agents ‘ Simplifies access to ontologies logger-file
_ _
o wir 2 > |.owl
Creating Owlready. . |
S individual | || smuiaton

RDF quadstore

Figure 13. OntologySim structure.

7.2. Visualization

The website (Frontend) visualizes the information available during and after the
simulation. In the following, the three most elementary pages are presented in more
detail: (1) simulation with back and forward data, hover functions for more information
(Figure 14); (2) dashboard and charts with KPIs (Figure 15); and (3) event logging including
filtering and sorting of events (Figure 16).

Appl. Sci. 2022,12, 1608

17 of 22

OntologySim
= Simulation
Simulation control Run until Current status Reset data
<< < P Stat > >> 500 m Event: 1 Time: 500.64 ® Delete
WAIT_TRANSPORT: event: e2526; time: 501; timeDiff: 5; transport: t1;
© View ‘
Q = Legend
e & [4 e
e @ @
BT 100%
20 Xmo Ao
(@)
() @ p61: state2
& Process: -
4 Last Process: -
€ q0, 0,
*q2 APT: 100%
= Am1 AST: 0%
(o) to
O @roo:state5

& Process: -
2 Last Process: -

€ q2,q2,

Figure 14. Simulation with back and forward data, hover functions for more information.

The following elements are displayed in the graphic visualization of the simulation:
Queue, Process Queue, Machine, and Transporter. In addition, the last event is displayed
for the transporter and the machine. To be able to distinguish individual products, various
product types are colored differently, and the progress is symbolized by the fill level of the
circle and hovering over the product provides further information, such as queue time and
the start of production. Furthermore, the visualization makes it possible to go back to steps
in the production to better understand the agents” decisions.

OntologySim

= KPIs

Current status

Refresh kPl dato

Time: 50448
Al Simulation ~ Machine Queue Transporter Product
Simulation
|~ KPIs % © ™ ®
100.00 455 10 n
OEE Time wIP AOET
Transporter oew- Machine Detai

Time Time
AUTTp 056 AUPTp 1
AusTp 022 Utilization AUSTp 0 Utilization
ADOTp 0 ADOTp 0

\ 100 200 300 500 100 200 300 500

Product AOET: 71 oews- Queue Detais >
Tme Time
APTp 022
AQMTp 049 N
ATTp 019 Utilization FillLevel 028 Utilization
Empty 072
700 200 300 500 100 200 300 500

Figure 15. KPI Dashboard of a simulation run.

The KPI overview enables quick analysis of the production. For this purpose, the
summarized value and the course of the KPIs are displayed during the simulation. Selected
KPIs are visualized graphically, and the remaining KPIs are displayed in tabular form, as
shown in Figure 15.

Appl. Sci. 2022,12, 1608

18 of 22

OntologySim

= Events

Simulation control Run until Current status. Reset data
P stat > >> time m Event: 24 Time: 504.48 & Delete

All Machine Queue Transporter Order Release Product

@ Events Y Filter
Basic Type Additional
Time Postion Process Number of
Name Time diff Type Additional type Product Postion info Machine Transport id Location Task parts
€256 50064 5 Wait_Transport tl
2527 500.64 0 Transporter
e2514 50187 84 Process p61 mo
2515 501.87 0 Change EndProcess p61 pot mo mo
2516 501.87 Machine
2551 501.87 Change StartProcessStayBlocked p65 pos ql
2552 501.87 SetUp mo
€2538 50336

Transport 10 17

PSS

e2546 5038
e2547 5038

0
0
0
7
7 Transport © 10
0
2548 5038 0 Transporter
0
0
0
0
0
5

Change RemovefromTransporter p68 po2 mo mo
€2556 5038 Change AddToTransporter p61 pol4 ©
€2557 5038 Transporter
2558 5038 Transport © 10
€2559 5038

€2560 503.8

Change RemoveFromTransporter 69 pol mo mo
Transporter

2545 50408
82505 50414 1316 Process 060 m1

EndBlockForTransporter
Figure 16. Event logger of simulation.

The event logging page allows the display of all past events and the filtering and
sorting of events, as exemplified in Figure 16. For example, this enables to track the path of
individual products exactly or to display only one product type on a machine.

Allin all, the proposed framework is adaptable, as the strict division of the simulation
core and visualization allows simple integration and adaption with existing systems and
requirements. Thus, the overview is as presented in Figures 14-16.

8. Discussion

Regarding the aim of ”[presenting] a combination of ontology with manufacturing
simulation, which is available as an open-source solution to the general public and is
distinguished from previous solutions by its flexibility and storability”, the proposed
OntologySim satisfies all requirements outlined in the literature review in Section 3. As
shown in Table 3, the OntologySim uses the underlying ontology (or several ontologies)
both as a schema and as the underlying simulation storage and core. Thereby, it provides an
application framework with the ability to support multi-agent systems and interventions.
The latter is crucial and enabled by the truly ontology-based schema and storage and, thus,
enables the OntologySim to achieve Ontology Integration Level 5.

As explained in Table 4, OntologySim can be compared to existing simulation frame-
works in terms providing a visualization, changeability via GUI and integration of KPI
calculation or flexibility. The latter is based on the ontology simulation core approach and,
hence, additionally enables changeability of the simulation and interventions beyond the
state-of-the-art. The challenge in developing ontology-based simulations, however, is to
achieve high performance in terms of execution speed. The OntologySim is slower com-
pared to SimPy, Anylogic, and other commercially available simulations. Slower, although
massive, speed improvements have been achieved by avoiding SPARQL and SWRL rules.
Nevertheless, further speed improvements are required to ensure the applicability in much
larger systems and, thus, to enable more use cases the benefits of an OntologySim-enabled
real digital twin. Furthermore, the implemented web application is not a stateless API
because of the state storage in the ontology. In today’s web applications, stateless APIs are
used to enable multi-user operation. Hence, this multi-user operation should be included
and examined in the application for further follow-up studies. Nevertheless, the provided
OntologySim as an Ontology Integration Level 5 framework enables the application of
truly interlocked digital twin, the analysis of “what if” situations in up-to-the-minute
simulations, and the convenience for extendability of an open source software.

Appl. Sci. 2022,12, 1608

19 of 22

Table 3. OntologySim classification according to the literature review.

Ontology Real
System World Simulation
%)
s
=
[
E
—~ [72]
N>
B g
v Y =g >
0 v =} @
g — g = s}
[=] o [[=] =1
£ » 5 g & g £
] Y 5,3 “ o 5 >~ x B
E » =) - E (=] 0 = g
51 S <] N o=~ 80 %)
= » S A =] S =1 9]
3] -~ [™ -~ 1 .: E c 3
w § o «© § S 2 5 & &8 &8
L .9 Q > -— > = -
a oD] % - — é [} 28 c S]
e < 7 o 51 < 0 £) g =
Ll o=t o — =] (=]] =} —_ E o]
S E 2 3T 5 5 & E g & g
£ 2 & £ & %X = & £ £ 2]
Approach by © 2 2 O <« @m O =2 O £ B MainGoal

Proposed Implementation as Fully ontology-based simulations

OntologySim[6465] @€ e e e @ O O O 5 @ @ Simulation

Legend: @ regarded © rudimentary regarded O not regarded

Table 4. Comparison of simulation application.

Applicability Availability Modularity
2 2] 2
£ B E g £
® =] -] B =) 2
N] =] 1) c < =
o— = <] [75) 5] I br=i
= S} o & = 3 0 2
i 5 & g 2 g i g
Simulation 5) 0 M o = @) =
SimPy [54] (@) O [] © ([] ©) O O
AnyLogic[56] @ © (] © O) O ()
Siemens PLM (] © [] © O O (@) ©
OntologySim ® © © ° { (® (]
Legend: @ implemented © partly implemented O not possible

Despite the previously described advantages and approaches to circumvent the dis-
advantages of an ontology-based production simulation, in general, detrimental issues
are as follows: Simulation speed is extenuated due to numerous knowledge graph or
ontology queries. While queries, for instance, with SPARQL, are more flexible than existing
frameworks, they are yet typically more complex to apply than semi-graphical GUIs. The
direct integration into existing MES or ERP systems is not (yet) regarded.

9. Summary and Outlook

In order to enable fully autonomous digital twins that interact with real world entities
and allow the digital representation of changing and flexible production systems, an
ontology-based simulation model, the OntologySim, is presented. The OntologySim is an
open-source fully ontology-based event-discrete simulation, which has high flexibility and
modularity due to the developed ontology schema and the defined interfaces. Due to the
fully ontology-based approach, it is possible to change and save simulations during runtime.
The designed user interface allows a detailed analysis of the agents using KPIs, event, and
simulation display. Since OntologySim is published as open source (AGPL-3.0 License),
we hope to contribute to the growing collaboration and exchange in the production and
simulation community.

Appl. Sci. 2022,12, 1608 20 of 22

Follow up research shall continue the development to enable to join and separate
products. This would offer new possibilities to better map production processes in the
industry and likewise enable portfolio external products and their influences on the pro-
duction system to be analyzed [33]. Furthermore, work on the OntologySim is ongoing
and feedback from the community is being incorporated. To further close the research
gap as outlined before, experimental studies with real world use cases shall be continued
to be conducted. Last, but not least, the advantages provided by the ontology core can
be researched with the integration of autonomous production control, understandable
reinforcement learning [55], and novel production planning approaches that make use of
the available real-time data and experimentation ability in further research projects.

Author Contributions: Conceptualization, M.C.M., LK., A K. and G.L.; methodology, M.C.M., LK.,
A K. and G.L; software, L.K. and M.C.M.; validation, L.K. and M.C.M.; formal analysis, L.K. and
M.C.M.; investigation, L.K. and M.C.M.; resources, M.C.M., AK. and G.L.; data curation, L.K.
and M.C.M.; writing—original draft preparation, L.K. and M.C.M.; writing—review and editing,
M.CM,, LK, AK. and G.L.; visualization, L.K. and M.C.M.; supervision,A.K. and G.L.; project
administration, M.C.M..; funding acquisition, M.C.M., A K. and G.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research work was undertaken in the context of DIGIMAN4.0 project (“DIGItal
MANufacturing Technologies for Zero-defect Industry 4.0 Production”, http://www.digiman4-0
.mek.dtu.dk/, accessed on 27 December 2021). DIGIMAN4.0 is a European Training Network
supported by Horizon 2020, the EU Framework Programme for Research and Innovation (Project
ID: 814225).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Nee, A.Y.; Ong, S.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann.
2012, 61, 657-679. [CrossRef]

2. Duray, R,; Ward, P.T,; Milligan, G.W.; Berry, W.L. Approaches to mass customization: Configurations and empirical validation. J.
Oper. Manag. 2000, 18, 605-625. [CrossRef]

3. May, M.C,; Overbeck, L.; Wurster, M.; Kuhnle, A.; Lanza, G. Foresighted digital twin for situational agent selection in production
control. Procedia CIRP 2021, 99, 27-32. [CrossRef]

4. Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res.
2020, 58, 1927-1949. [CrossRef]

5. Duran-Muiioz, I.; Bautista-Zambrana, M.R. Applying ontologies to terminology: Advantages and disadvantages. Hermes-J. Lang.
Commun. Bus. 2013, 65-77. [CrossRef]

6. Cheng, H.; Zeng, P; Xue, L.; Shi, Z.; Wang, P.; Yu, H. Manufacturing ontology development based on Industry 4.0 demonstration
production line. In Proceedings of the 2016 Third International Conference on Trustworthy Systems and Their Applications
(TSA), Wuhan, China, 18-22 September 2016; pp. 42-47.

7. Lamy,].B. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for
biomedical ontologies. Artif. Intell. Med. 2017, 80, 11-28. [CrossRef]

8. Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J. -Hum.-Comput. Stud. 1995,
43,907-928. [CrossRef]

9. Shamsfard, M.; Barforoush, A.A. Learning ontologies from natural language texts. Int. J. -Hum.-Comput. Stud. 2004, 60, 17-63.
[CrossRef]

10. Knublauch, H.; Oberle, D.; Tetlow, P.; Wallace, E.; Pan, J.; Uschold, M. A semantic web primer for object-oriented software
developers. In W3c Working Group Note W3C; 2006. Available online: https:/ /www.w3.org/TR/sw-oosd-primer/ (accessed on
27 December 2021).

11. Wand, Y.; Weber, R. An ontological model of an information system. IEEE Trans. Softw. Eng. 1990, 16, 1282-1292. [CrossRef]

12. Gruninger, Michael, L.J. Ontology: Applications and design. Commun. ACM 2002, 45, 39-41.

13. Berners-Lee, T.; Hendler,].; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34-43. [CrossRef]

14. McGuinness, D.L.; Van Harmelen, F. OWL web ontology language overview. W3C Recomm. 2004, 10, 2004.

15. Jurisica, I.; Mylopoulos, J.; Yu, E. Ontologies for knowledge management: An information systems perspective. Knowl. Inf. Syst.

2004, 6, 380-401. [CrossRef]

http://www.digiman4-0.mek.dtu.dk/
http://www.digiman4-0.mek.dtu.dk/
http://doi.org/10.1016/j.cirp.2012.05.010
http://dx.doi.org/10.1016/S0272-6963(00)00043-7
http://dx.doi.org/10.1016/j.procir.2021.03.005
http://dx.doi.org/10.1080/00207543.2019.1636321
http://dx.doi.org/10.7146/hjlcb.v26i51.97438
http://dx.doi.org/10.1016/j.artmed.2017.07.002
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1016/j.ijhcs.2003.08.001
https://www.w3.org/TR/sw-oosd-primer/
http://dx.doi.org/10.1109/32.60316
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1007/s10115-003-0135-4

Appl. Sci. 2022,12, 1608 21 of 22

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and Complexity of SPARQL. In The Semantic Web-ISWC 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 30—43.

Lamy, J.B. Ontology-oriented programming for biomedical informatics. In Transforming Healthcare with the Internet of Things; I0S
Press: Amsterdam, The Netherlands 2016; pp. 64-68.

Kalyanpur, A.; Pastor, D.J.; Battle, S.; Padget,].A. Automatic Mapping of OWL Ontologies into Java. In SEKE; Citeseer: Princeton,
NJ, USA, 2004; Volume 4, pp. 98-103.

Goldman, N.M. Ontology-oriented programming: Static typing for the inconsistent programmer. In The Semantic Web-ISWC 2003;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 850-865.

Seaborne, A.; Manjunath, G.; Bizer, C.; Breslin, J.; Das, S.; Davis, I.; Harris, S.; Idehen, K.; Corby, O.; Kjernsmo, K.; et al.
SPARQL/Update: A language for updating RDF graphs. W3c Memb. Submiss. 2008, 15, 1-13.

World Wide Web Consortium. OWL 2 Web Ontology Language Document Overview. 2012. Available online: https:/ /www.w3
.org/TR/owl2-overview/ (accessed on 27 December 2021).

Knublauch, H.; Fergerson, RW.; Noy, N.F; Musen, M.A. The Protégé OWL plugin: An open development environment for
semantic web applications. In The Semantic Web-ISWC 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 229-243.
Kalyanpur, A.; Parsia, B.; Sirin, E.; Grau, B.C.; Hendler,]. Swoop: A web ontology editing browser. |. Web Semant. 2006, 4, 144-153.
[CrossRef]

Haase, P; Lewen, H.; Studer, R.; Tran, D.T.; Erdmann, M.; d’Aquin, M.; Motta, E. The Neon Ontology Engineering Toolkit. 2008.
Available online: http:/ /neon-toolkit.org/wiki/Main_Page.html (accessed on 27 December 2021).

Horridge, M.; Bechhofer, S. The owl api: A java api for owl ontologies. Semant. Web 2011, 2, 11-21. [CrossRef]

Jean-Baptiste, L. Constructs, restrictions, and class properties. In Ontologies with Python; Springer: Berlin/Heidelberg, Germany,
2021; pp. 135-156.

Adel, A.Z.; Zebari, S.; Jacksi, K. Football Ontology Construction using Oriented Programming. J. Appl. Sci. Technol. Trends 2020,
1, 24-30.

Liu, C,; Jiang, P.; Jiang, W. Web-based digital twin modeling and remote control of cyber-physical production systems. Robot.
-Comput.-Integr. Manuf. 2020, 64, 101956. [CrossRef]

Ingenieure, V.D. VDI 3633 Simulation von Logistik-, Materialfluf- und Produktionssytemen—VDI 3633 Entwurf| Begriffsdefinitionen;
Beuth: Diisseldorf, Germany, 1996.

HrdliczNa, V. Leitfaden fiir Simulationsbenutzer in ProduNtion und LogistiN. ASIM Mitteilungen 1997, 58.

May, M.C; Kiefer, L.; Kuhnle, A.; Stricker, N.; Lanza, G. Decentralized multi-agent production control through economic model
bidding for matrix production systems. Procedia CIRP 2021, 96, 3-8. [CrossRef]

Greschke, P. Matrix-Produktion: Konzept einer Taktunabhingigen Fliefifertigung; BoD-Books on Demand Gmbh: Norderstedt,
Germany, 2020.

May, M.C,; Schmidt, S.; Kuhnle, A; Stricker, N.; Lanza, G. Product Generation Module: Automated Production Planning for
optimized workload and increased efficiency in Matrix Production Systems. Procedia CIRP 2021, 96, 45-50. [CrossRef]

Panetto, H.; Baina, S.; Morel, G. Mapping the IEC 62264 models onto the Zachman framework for analysing products information
traceability: A case study. J. Intell. Manuf. 2007, 18, 679-698. [CrossRef]

Wolfswinkel, J.E.; Furtmueller, E.; Wilderom, C.P. Using grounded theory as a method for rigorously reviewing literature. Eur. .
Inf. Syst. 2013, 22, 45-55. [CrossRef]

Karageorgos, A.; Mehandjiev, N.; Weichhart, G.; Himmerle, A. Agent-based optimisation of logistics and production planning.
Eng. Appl. Artif. Intell. 2003, 16, 335-348. [CrossRef]

Monch, L.; Stehli, M. An ontology for production control of semiconductor manufacturing processes. In Multiagent System
Technologies; MATES 2003. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 156-167.
Scholz,].; Schabus, S. An indoor navigation ontology for production assets in a production environment. In Geographic Information
Science; GIScience 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; pp. 204-220.

Viljanen, K.; Tuominen, J.; Hyvonen, E. Ontology libraries for production use: The Finnish ontology library service ONKI. In
European Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2009; pp. 781-795.

Katti, B. Ontology-Based Approach to Decentralized Production Control in the Context of Cloud Manufacturing Execution
Systems. Ph.D. Thesis, Technical University Kaiserslautern, Kaiserslautern, Germany, 2020.

Terkaj, W.; Pedrielli, G.; Sacco, M. Virtual factory data model. In Proceedings of the Workshop on Ontology and Semantic Web
for Manufacturing, Graz, Austria, 24-27 July 2012; pp. 29-43.

Silver, G.A.; Miller, J.A.; Hybinette, M.; Baramidze, G.; York, W.S. An ontology for discrete-event modeling and simulation.
Simulation 2011, 87, 747-773. [CrossRef] [PubMed]

Benjamin, P.; Patki, M.; Mayer, R. Using ontologies for simulation modeling. In Proceedings of the 2006 Winter Simulation
Conference, Monterey, CA, USA, 3-6 December 2006; pp. 1151-1159.

Du, J.; Jing, H.; Choo, KK.R,; Sugumaran, V.; Castro-Lacouture, D. An ontology and multi-agent based decision support
framework for prefabricated component supply chain. Inf. Syst. Front. 2020, 22, 1467-1485. [CrossRef]

Terkaj, W.; Urgo, M. Ontology-based modeling of production systems for design and performance evaluation. In Proceedings of
the 2014 12th IEEE International Conference on Industrial Informatics (INDIN), Porto Alegre, Brazil, 27-30 July 2014; pp. 748-753.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1016/j.websem.2005.10.001
http://neon-toolkit.org/wiki/Main_Page.html
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.1016/j.rcim.2020.101956
http://dx.doi.org/10.1016/j.procir.2021.01.043
http://dx.doi.org/10.1016/j.procir.2021.01.050
http://dx.doi.org/10.1007/s10845-007-0040-x
http://dx.doi.org/10.1057/ejis.2011.51
http://dx.doi.org/10.1016/S0952-1976(03)00076-9
http://dx.doi.org/10.1177/0037549710386843
http://www.ncbi.nlm.nih.gov/pubmed/22919114
http://dx.doi.org/10.1007/s10796-019-09941-x

Appl. Sci. 2022,12, 1608 22 of 22

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Terkaj, W.; Tolio, T.; Urgo, M. A virtual factory approach for in situ simulation to support production and maintenance planning.
CIRP Ann. 2015, 64, 451-454. [CrossRef]

Warden, T.; Porzel, R.; Gehrke,].D.; Herzog, O.; Langer, H.; Malaka, R. Towards Ontology-Based Multiagent Simulations: The Plasma
Approach; ECMS: Kuala, Lumpur, 2010; pp. 50-56.

Gurjanov, A.; Zakoldaev, D.; Shukalov, A.; Zharinov, I. The ontology in description of production processes in the Industry 4.0
item designing company. J. Phys. 2018, 1059, 012010. [CrossRef]

Fumagalli, L.; Pala, S.; Garetti, M.; Negri, E. Ontology-based modeling of manufacturing and logistics systems for a new MES
architecture. In IFIP International Conference on Advances in Production Management Systems; Springer: Berlin/Heidelberg, Germany,
2014; pp. 192-200.

Mazzola, L.; Kapahnke, P.; Vujic, M.; Klusch, M. CDM-Core: A Manufacturing Domain Ontology in OWL2 for Production and
Maintenance; KEOD: Setubal, Portugal, 2016; pp. 136-143.

Guizzardi, G.; Wagner, G. Towards an ontological foundation of discrete event simulation. In Proceedings of the 2010 Winter
Simulation Conference, Baltimore, MD, USA, 5-8 December 2010; pp. 652-664.

Ansari, F.; Khobreh, M.; Seidenberg, U.; Sihn, W. A problem-solving ontology for human-centered cyber physical production
systems. CIRP J. Manuf. Sci. Technol. 2018, 22, 91-106. [CrossRef]

Chen, R.S.; Tu, M.A. Development of an agent-based system for manufacturing control and coordination with ontology and
RFID technology. Expert Syst. Appl. 2009, 36, 7581-7593. [CrossRef]

Matloff, N. Introduction to discrete-event simulation and the simpy language. Dept. Comput. Sci. Univ. Calif. Davis 2008, 2, 1-33.
Kuhnle, A.; May, M.C.; Schifer, L.; Lanza, G. Explainable reinforcement learning in production control of job shop manufacturing
system. Int. J. Prod. Res. 2021, 1-23. [CrossRef]

Borshchev, A.; Brailsford, S.; Churilov, L.; Dangerfield, B. Multi-method modelling: AnyLogic. Discrete-Event Simulation and
System Dynamics for Management Decision Making; Wiley: West Sussex, UK, 2014; pp. 248-279.

ISO 22400-2; Automation Systems and Integration—Key Performance Indicators (KPIs) for Manufacturing Operations Man-
agement—~Part 2: Definitions and Descriptions. International Organization for Standardization: Geneva, Switzeralnd, 2014.
[CrossRef]

Overbeck, L.; Hugues, A.; May, M.C.; Kuhnle, A ; Lanza, G. Reinforcement Learning Based Production Control of Semi-automated
Manufacturing Systems. Procedia CIRP 2021, 103, 170-175. [CrossRef]

May, M.C.; Maucher, S.; Holzer, A.; Kuhnle, A.; Lanza, G. Data analytics for time constraint adherence prediction in a
semiconductor manufacturing use-case. Procedia CIRP 2021, 100, 49-54. [CrossRef]

May, M.C.; Behnen, L.; Holzer, A.; Kuhnle, A.; Lanza, G. Multi-variate time-series for time constraint adherence prediction in
complex job shops. Procedia CIRP 2021, 103, 55-60.

Kandler, M.; May, M.C.; Kurtz, J.; Kuhnle, A.; Lanza, G. Development of a Human-Centered Implementation Strategy for
Industry 4.0 Exemplified by Digital Shopfloor Management. In Towards Sustainable Customization: Bridging Smart Products and
Manufacturing Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 738-745. [CrossRef]

Waurster, M.; Michel, M.; May, M.C.; Kuhnle, A.; Stricker, N.; Lanza, G. Modelling and condition-based control of a flexible and
hybrid disassembly system with manual and autonomous workstations using reinforcement learning. J. Intell. Manuf. 2022, 33,
575-591.

Kiefer, L.; May, M.C. Read the Docs: OntologySim. 2021. Available online: https://ontologysim.readthedocs.io (accessed on 30
December 2021).

Kiefer, L.; May, M.C. OntologySim_react. 2021. Available online: https://github.com/larsKiefer/ontologysim_react (accessed on
27 December 2021).

Kiefer, L.; May, M.C. OntologySim. 2021. Available online: https://github.com/larsKiefer/ontologysim (accessed on 27
December 2021). [CrossRef]

Kang, N.; Zhao, C.; Li, J.; Horst,].A. A Hierarchical structure of key performance indicators for operation management and
continuous improvement in production systems. Int. . Prod. Res. 2016, 54, 6333-6350.

http://dx.doi.org/10.1016/j.cirp.2015.04.121
http://dx.doi.org/10.1088/1742-6596/1059/1/012010
http://dx.doi.org/10.1016/j.cirpj.2018.06.002
http://dx.doi.org/10.1016/j.eswa.2008.09.068
http://dx.doi.org/10.1080/00207543.2021.1972179
http://dx.doi.org/10.1016/j.procir.2021.10.027
http://dx.doi.org/10.1016/j.procir.2021.05.008
http://dx.doi.org/10.1016/j.procir.2021.10.008
http://dx.doi.org/10.1007/s10845-021-01863-3
https://ontologysim.readthedocs.io
https://github.com/larsKiefer/ontologysim_react
https://github.com/larsKiefer/ontologysim
http://dx.doi.org/10.1080/00207543.2015.1136082

	Introduction
	Foundation
	Ontology
	Simulation
	Term Ontology-Based Simulation

	Related Work
	Literature Review
	Simulation Programs

	Proposed Ontology-Based Simulation
	OntologySim Conceptualization
	Unique Selling Proposition (USP)
	Classification of simulation

	Design Principles for the OntologySim
	Machine
	Event
	Product Type

	Procedure of OntologySim
	Configuration of the Simulation (1)
	Reasoning/Loading of the Simulation (2)
	Running through the Simulation (3)
	Logging & Storage of KPIs (4)

	Technical Description
	Basic Building Block of the Ontologysim
	Visualization

	Discussion
	Summary and Outlook
	References

