11,791 research outputs found

    Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

    Full text link
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter -radiation interaction are illustrated in a simple relativistic classical electromagnetic example.Comment: 18 page

    Study of basic bio-electrochemistry Sixth monthly progress report, 1-31 Aug. 1963

    Get PDF
    Contribution of hydrogen peroxide to electrode reaction in electrochemical cell by considering effect of catalyst on cell curren

    Classical interpretation of the Debye law for the specific heat of solids

    Get PDF
    We derive the Debye law for the specific heat of solids within the realm of stochastic electrodynamics (i.e., classical electrodynamics with the assumption of a real zero-point field). Random lattice vibrations are generated by the Planck radiation including zero point, which is absorbed by the ions. The equilibrium is accomplished by a fluctuation-dissipation mechanism due to the emission of radiation by the ions in accelerated motion

    Modification of energy shifts of atoms by the presence of a boundary in a thermal bath and the Casimir-Polder force

    Full text link
    We study the modification by the presence of a plane wall of energy level shifts of two-level atoms which are in multipolar coupling with quantized electromagnetic fields in a thermal bath in a formalism which separates the contributions of thermal fluctuations and radiation reaction and allows a distinct treatment to atoms in the ground and excited states. The position dependent energy shifts give rise to an induced force acting on the atoms. We are able to identify three different regimes where the force shows distinct features and examine, in all regimes, the behaviors of this force in both the low temperature limit and the high temperature limit for both the ground state and excited state atoms, thus providing some physical insights into the atom-wall interaction at finite temperature. In particular, we show that both the magnitude and the direction of the force acting on an atom may have a clear dependence on atomic the polarization directions. In certain cases, a change of relative ratio of polarizations in different directions may result in a change of direction of the force.Comment: 29 pages, 3 figure
    corecore