We study the modification by the presence of a plane wall of energy level
shifts of two-level atoms which are in multipolar coupling with quantized
electromagnetic fields in a thermal bath in a formalism which separates the
contributions of thermal fluctuations and radiation reaction and allows a
distinct treatment to atoms in the ground and excited states. The position
dependent energy shifts give rise to an induced force acting on the atoms. We
are able to identify three different regimes where the force shows distinct
features and examine, in all regimes, the behaviors of this force in both the
low temperature limit and the high temperature limit for both the ground state
and excited state atoms, thus providing some physical insights into the
atom-wall interaction at finite temperature. In particular, we show that both
the magnitude and the direction of the force acting on an atom may have a clear
dependence on atomic the polarization directions. In certain cases, a change of
relative ratio of polarizations in different directions may result in a change
of direction of the force.Comment: 29 pages, 3 figure