240 research outputs found

    Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice

    Get PDF
    OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ)-induced diabetes in apolipoprotein E(-/-) mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): Study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≄30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Recommendations for the transition of patients with ADHD from child to adult healthcare services:a consensus statement from the UK adult ADHD network

    Get PDF
    The aim of this consensus statement was to discuss transition of patients with ADHD from child to adult healthcare services, and formulate recommendations to facilitate successful transition. An expert workshop was convened in June 2012 by the UK Adult ADHD Network (UKAAN), attended by a multidisciplinary team of mental health professionals, allied professionals and patients. It was concluded that transitions must be planned through joint meetings involving referring/receiving services, patients and their families. Negotiation may be required to balance parental desire for continued involvement in their child’s care, and the child’s growing autonomy. Clear transition protocols can maintain standards of care, detailing relevant timeframes, responsibilities of agencies and preparing contingencies. Transition should be viewed as a process not an event, and should normally occur by the age of 18, however flexibility is required to accommodate individual needs. Transition is often poorly experienced, and adherence to clear recommendations is necessary to ensure effective transition and prevent drop-out from services

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt):study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≄30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Self-Guided Psychological Treatment for Depressive Symptoms: A Meta-Analysis

    Get PDF
    Background: A number of trials have examined the effects of self-guided psychological intervention, without any contact between the participants and a therapist or coach. The results and sizes of these trials have been mixed. This is the first quantitative meta-analysis, aimed at organizing and evaluating the literature, and estimating effect size. Method: We conducted systematic literature searches in PubMed, PsycINFO and Embase up to January 2010, and identified additional studies through earlier meta-analyses, and the references of included studies. We identified seven randomized controlled trials that met our inclusion criteria, with a total of 1,362 respondents. The overall quality of the studies was high. A post-hoc power calculation showed that the studies had sufficient statistical power to detect an effect size of d = 0.19. Results: The overall mean effect size indicating the difference between self-guided psychological treatment and control groups at post-test was d = 0.28 (pless than0.001), which corresponds to a NNT of 6.41. At 4 to 12 months follow-up the effect size was d = 0.23. There was no indication for significant publication bias. Conclusions: We found evidence that self-guided psychological treatment has a small but significant effect on participants with increased levels of depressive symptomatology.Original Publication:Pim Cuijpers, Tara Donker, Robert Johansson, David C. Mohr, Annemieke van Straten and Gerhard Andersson, Self-Guided Psychological Treatment for Depressive Symptoms: A Meta-Analysis, 2011, PLoS ONE, (6), 6.http://dx.doi.org/10.1371/journal.pone.0021274Copyright: Public Library of Science (PLoS)http://www.plos.org

    Efficacy and cost-effectiveness of a web-based and mobile stress-management intervention for employees: design of a randomized controlled trial

    Get PDF
    Background: Work-related stress is associated with a variety of mental and emotional problems and can lead to substantial economic costs due to lost productivity, absenteeism or the inability to work. There is a considerable amount of evidence on the effectiveness of traditional face-to-face stress-management interventions for employees; however, they are often costly, time-consuming, and characterized by a high access threshold. Web-based interventions may overcome some of these problems yet the evidence in this field is scarce. This paper describes the protocol for a study that will examine the efficacy and cost-effectiveness of a web-based guided stress-management training which is based on problem solving and emotion regulation and aimed at reducing stress in adult employees. Methods. The study will target stressed employees aged 18 and older. A randomized controlled trial (RCT) design will be applied. Based on a power calculation of d=.35 (1-ÎČ of 80%, α =.05), 264 participants will be recruited and randomly assigned to either the intervention group or a six-month waitlist control group. Inclusion criteria include an elevated stress level (Cohen's Perceived Stress Scale-10 ≄ 22) and current employment. Exclusion criteria include risk of suicide or previously diagnosed psychosis or dissociative symptoms. The primary outcome will be perceived stress, and secondary outcomes include depression and anxiety. Data will be collected at baseline and seven weeks and six months after randomization. An extended follow up at 12 months is planned for the intervention group. Moreover, a cost-effectiveness analysis will be conducted from a societal perspective and will include both direct and indirect health care costs. Data will be analyzed on an intention-to-treat basis and per protocol. Discussion. The substantial negative consequences of work-related stress emphasize the necessity for effective stress-management trainings. If the proposed internet intervention proves to be (cost-) effective, a preventative, economical stress-management tool will be conceivable. The strengths and limitations of the present study are discussed. Trial registration. German Register of Clinical Studies (DRKS): DRKS00004749. © 2013 Heber et al.; licensee BioMed Central Ltd
    • 

    corecore