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Abstract 

Central to the development of diabetic macro- and microvascular disease is endothelial 

dysfunction, which appears well before any clinical sign, but importantly, is potentially 

reversible. We previously demonstrated that hyperglycemia activates NFAT in conduit and 

medium sized resistance arteries and that NFAT blockade abolishes diabetes-driven 

aggravation of atherosclerosis. Here we test whether NFAT plays a role in the development of 

endothelial dysfunction in diabetes. 

NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita 

(Ins2+/-) mice when compared to non-diabetic littermates. Treatment of diabetic mice with the 

NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase 

transcriptional activity in skin microvessels, resulting in improved microvascular function, as 

assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. 

This improvement was abolished by pre-treatment with the nitric oxide synthase inhibitor L-

NAME, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed 

differences. A-285222 treatment enhanced dermis eNOS expression and plasma NO levels of 

diabetic mice. It also prevented induction of inflammatory cytokines IL-6 and osteopontin, 

lowered plasma Et-1 and blood pressure, and improved mice survival without affecting blood 

glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve 

endothelial function in diabetes.
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Introduction

Cardiovascular complications are the major cause of morbidity and mortality in patients who 

have diabetes. Based on current trends, the rising incidence of diabetes (expected to reach 700 

million people worldwide by 2025), will undoubtedly equate to increased cardiovascular 

mortality. (1) Central to the development of diabetic vascular complications is endothelial 

dysfunction, which appears well before any clinical sign, and importantly is potentially 

reversible. It is a generalized phenomenon that takes place in both large blood vessels and the 

microvasculature. (2) Impaired endothelial function is characterized by a decreased production 

or bioavailability of nitric oxide (NO), leading in the larger vessels to increased 

vasoconstriction, inflammation and thrombosis, and predisposing to atherosclerosis; while 

contributing in the microvasculature to the development of retinopathy, nephropathy, 

cardiopathy, skin lesions and cerebrovascular dysfunction. (3) The molecular mechanisms 

leading to endothelial dysfunction in diabetes are still not clear. 

Previous studies from our group demonstrate that hyperglycemia is an effective stimulus for 

activation of the calcium (Ca2+)/calcineurin-sensitive transcription factor Nuclear Factor of 

Activated T-cells (NFAT)c3 in conduit and medium-sized resistance arteries. (4-6) This 

activation involves the local release of extracellular nucleotides (i.e.UTP, UDP) acting on 

purinergic P2Y2/4 and P2Y6 receptors, leading to increased intracellular Ca2+ and subsequent 

activation of calcineurin and NFAT. (4) High glucose also reduces nuclear export of NFATc3 

by inhibiting GSK-3 and JNK, contributing to increased NFATc3 nuclear accumulation. (4) 

In a series of follow-up publications primarily focusing on the smooth muscle, we showed 

that once activated, NFAT increases the expression of inflammatory mediators in the arterial 

wall, such as osteopontin (OPN), cyclooxygenase-2 (COX-2), interleukin (IL)-6, vascular cell 
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adhesion molecule 1 (VCAM-1), tissue factor and allograft inflammatory factor-1 (AIF-1). (5-

9) More recently, we demonstrated a role for NFAT in diabetes-driven atherosclerotic plaque 

formation via regulation of inflammatory mediators and anti-oxidant defences (i.e. NOX4 and 

catalase). (6; 10) However, it is still unknown whether NFAT plays a role in diabetes–driven 

endothelial dysfunction, particularly in microcirculatory beds where vascular complications of 

diabetes are commonly found. Interestingly, in cultured bovine aortic endothelial cells, 

blockers of calcineurin/NFAT signaling [i.e. cyclosporine A (CsA), tacrolimus (FK506)] have 

been shown to up-regulate endothelial NO synthase (eNOS) expression. (11). We have shown 

that the skin microcirculation provides a representative model of generalized microvascular 

function and is useful for in vivo experimental mechanistic studies of endothelial function in 

small animals. (12; 13).

In this paper we hypothesize that NFAT is expressed in skin microvessels, that hyperglycemia 

may activate NFAT in skin microvessels and that in vivo blockade of NFAT with A-285222 

can attenuate microvascular dysfunction in diabetic mice. We also explore whether eNOS 

expression may be modulated by NFAT-signaling in this context. 
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Research Design and Methods

An expanded version of this section is available in the Online Data Supplement. Adult male 

diabetic Akita (Ins2+/−) mice were used according to the study protocol shown in Figure 1A, 

as well as crossbred with FVBN 9x-NFAT-luciferase reporter (NFAT-luc) mice (4; 14; 15) to 

generate Akita/NFAT-luc mice and non-diabetic wild-type (WT)/NFAT-luc littermates. Akita 

mice have a point mutation of the insulin 2 gene which leads to pancreatic beta-cell apoptosis, 

hypoinsulinemia and severe hyperglycemia. Non-obese, Akita mice develop type 2 diabetes 

phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling and as 

such are a good model for studying vascular complications of type 1 and lean type 2 diabetes 

subjects.(16)  Microvascular function was assessed non-invasively and longitudinally using a 

laser Doppler imager in combination with iontophoresis of endothelium-dependent and –

independent vasodilators [acetylcholine (ACh) and sodium nitroprusside (SNP), respectively] 

and localized heating as previously described. (12; 13) To standardize basal perfusion, blood 

vessels were pre-constricted with iontophoresis of 1% phenylephrine (PE) for 5 min 

(current=100 μA), prior iontophoresis of ACh or SNP.  To determine the contribution of 

endothelium-derived NO to ACh-mediated vasodilatation, microvascular responses to ACh 

were assessed 30 min after i.p. injection of the non-selective inhibitor of NO synthase, N(G)-

nitro-L-arginine methyl ester (L-NAME, Sigma Chemicals; 20 mg/kg). (12) On a separate 

day and to determine the maximum microvascular dilator capacity, a hyperemic response was 

initiated by localized heating of the skin using a specially designed heating probe (SH02™ 

skin heating unit and SHP3 probe, Moor Instruments Ltd, Axminster, UK). Perfusion was 

measured continuously as the temperature of the heating probe was increased to 42°C 

(1°C/min) and maintained for >10 min, which was sufficient for maximum vasodilatation to 

plateau.
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Mice were euthanized by cervical dislocation after anesthesia with 3% isoflurane in oxygen (2 

L/min) or for NFAT-luc experiments, anaesthetized by intraperitoneal (i.p.) injection of 7.5 

mg ketamine hydrochloride and 2.5 mg xylazine per 100 g body weight and euthanized by 

exsanguination through cardiac puncture. All animal protocols were performed in accordance 

with UK Home Office regulations (Project License PIL60/4265) and the Malmö/Lund Animal 

Care and Use Committee (Permits M78-10, M29-12, and M9-15) and abided by the Guide for 

the Care and Use of Laboratory Animals published by the Directive 2010/63/EU of the 

European Parliament. Luciferase activity was measured in the skin, aortic arch, abdominal 

aorta and carotid arteries in tissue homogenates as previously described. (14) Skin sections 

were used for histology (hematoxylin and eosin; H&E), for immunohistochemistry (eNOS) or 

for quantification of NFATc3 nuclear accumulation using confocal microscopy as previously 

described. (14; 17; 18) Organ culture of skin biopsies and dissociation of dermis and 

epidermis was done according to established protocols. (19-22) Skin fractions were used for 

gene expression, absolute quantification of NFAT isoforms and western blot analysis. Plasma 

cytokines, endothelial activation markers and total NO were measured in blood samples taken 

from the tail vein; albumin and creatinine were measured from urine. Total NO related species 

(nitrite, nitrate, nitrosothiols) were measured 4 weeks after treatment with A-285222 (Post-2) 

using a gas phase chemiluminescence reaction of NO with ozone using Sievers nitric oxide 

analyzer (NOA) model 280i (Analytix, Bodon, UK). Blood pressure was assessed using a 

non-invasive tail-cuff blood pressure system. A-285222 inhibits all NFAT family members 

and was kindly provided by Abbott Laboratories (Abbott Park, IL). This drug belongs to a 

series of 3,5-bis (trifluoromethyl)pyrazole (BTP) derivatives demonstrated to maintain NFAT 

in a phosphorylated state, blocking its nuclear import and subsequent transcription, without 

affecting NF-kB or AP-1 activation, or calcineurin phosphatase activity (23). Results are 

expressed as means ± SEM unless specified otherwise. 
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Results 

In vivo treatment with A-285222 improves skin microvascular responses to acetylcholine 

and localized heating in diabetic mice

While no significant differences in the responses to phenylephrine (PE) at baseline were 

found between non-diabetic WT and Akita mice, microvascular responses to iontophoresis of 

ACh were impaired in Akita mice (Figure 1B), with less vasodilation to ACh than in non-

diabetic WT mice. Diabetic Akita mice were treated with the NFAT blocker A-285222 (0.29 

mg/kg body weight) or vehicle (saline) for 4 weeks and microvascular function was assessed 

before (“Pre”; Figure 1C), directly after (“Post-1”; Figure 1D) or 4 weeks after the end of the 

treatment (“Post-2”; Figure 1E). Before commencement of treatment, baseline measurements 

of microvascular function were not significantly different between the groups (Figure 1C). 

Treatment with A-285222 resulted in improved ACh responses compared with vehicle treated 

controls at both time-points post-treatment (Figure 1D-E). Figure 1F summarizes maximum 

responses to ACh at each time-point showing a loss of endothelial function in Akita mice that 

is not observed in mice treated with A-285222. Treatment had no effect on blood glucose or 

body weight (Figures 1G-H). 

Pre-treatment with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) 

30 min prior to iontophoresis of ACh completely abrogated the improved response observed 

after treatment with A-285222, and had no impact on the responses measured in vehicle-

treated mice (Figure 2A). The dotted line in Figure 2A indicates the ACh response in mice 

after treatment with A-285222 in the absence of L-NAME treatment (corresponding to “Post-

1” data in Figure 1F). Iontophoresis of the NO donor SNP on the other hand, eliminated the 
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differences in microvascular responses observed after treatment between the groups, 

effectively vasodilating the vessels of vehicle treated mice to the same extent as those that had 

been treated with A-285222 (Figure 2B). Treatment with A-285222 had no effect on skin 

microvascular responses to ACh (regardless whether animals were treated or not with L-

NAME prior iontophoresis of ACh), and no effect on the responses to SNP on blood glucose 

levels or body weight in control non-diabetic wild-type mice (Supplemental figures 1 and 

2A-B). No significant differences were found in the responses to PE in WT and Akita mice 

with and without A285222 (not shown).

Skin microvascular responses to localized heating, which are largely dependent on NO, 

(24)were comparable between NFAT and saline-treated groups when measured prior to 

initiating the treatment (Figure 2C). Four weeks’ treatment with the NFAT blocker A-285222 

resulted in an improved vasodilator response compared with vehicle-treated mice (Figures 

2D-E). The longitudinal change in maximum vasodilator response (Pre to Post-1) indicates a 

loss of heat-induced vasodilation in vehicle-treated diabetic mice over 4 weeks (negative delta 

value), whereas A-285222 treatment improves the vasodilator response to heat (positive delta 

value), such that the difference between the groups was significantly different (Figure 2F). 

Treatment with the NFAT blocker A-285222 had no effect on skin microvascular responses to 

localized heating in control non-diabetic wild-type mice (Supplemental figure 2C-F).

NFATc3 is the predominant NFAT isoform expressed in mouse skin

To investigate NFAT isoforms expressed in mouse skin and in particular in skin microvessels, 

we collected skin from the flank of the mice corresponding to the area used for microvascular 

endothelial function measurements (Figure 3A). Since vessels in the mouse skin are 

predominantly located in the dermis (arrowheads in Figure 3B), we enzymatically dissociated 
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the dermis from the epidermis for measurements of NFAT isoform expression and NFAT-

dependent transcriptional activity. Absolute quantification of NFAT isoform mRNA 

expression showed that NFATc3 is the predominant isoform in both skin fractions (Figure 

3C), followed by NFATc1, NFATc2 and NFATc4 which were expressed at 6-, 17- and 630-

fold lower copy number in dermis when compared to NFATc3. A tendency towards lower 

NFAT isoform expression was observed in the dermis of Akita mice when compared to 

control WT mice, but differences were only statistically significant for NFATc4, which is 

overall expressed at very low levels (Figure 3D). Using confocal immunofluorescence 

microscopy of skin whole mounts, we found abundant NFATc3 staining in microvascular 

endothelial cells, visualized by CD31 positive immunostaining (Figure 3E). Despite 

comparable NFAT mRNA levels in dermis and epidermis, the dermis accounted for most of 

the NFAT-dependent transcriptional activity measured in whole skin samples (Figure 3F). 

Treatment with dispase causes separation at the dermal-epidermal basement membrane, (21) 

yielding pure fractions as evidenced by exclusive expression of the endothelial cell marker 

CD31 in the dermis fraction in western blot experiments (Figure 3G). 

In vivo treatment with A-285222 blocks diabetes-induced NFAT activation in the dermis 

In samples collected at termination (“Post-2”) from the same mice used for measurements of 

microvascular function, we found that in vivo treatment with A-285222 significantly 

decreased NFATc3 nuclear accumulation in skin microvessels (Figures 4A-B). NFAT-

dependent transcriptional activity in the skin of Akita mice gradually increased with longer 

durations of high glucose exposure (Supplemental figure 3A). Akita/NFAT-luc mice 

develop pronounced and sustained hyperglycemia from 4 weeks postnatal, failing to gain as 

much body weight as WT/NFAT-luc littermates, as well as proteinuria from 8 weeks 

postnatal and further increasing as the mice became older (Supplemental figures 3B-D).

Page 10 of 50

For Peer Review Only

Diabetes



11

In a separate cohort from that used for monitoring time-dependent effects of diabetes in the 

model (Supplemental figure 3), Akita/NFAT-luc and WT/NFAT-luc littermates were treated 

with A-285222 (0.29 mg/kg body weight) or vehicle (saline) for 4 weeks and NFAT-

dependent transcriptional activity was determined in skin and various arteries. In intact whole 

skin, a tendency to increased NFAT-luciferase activity (p=0.06) was observed  in 

Akita/NFAT-luc mice when compared to non-diabetic WT/NFAT-luc mice, while activity 

was lower in diabetic mice treated with A-285222 (Figure 4C). Further analysis of the dermis 

fraction, where vessels are located, showed a significant diabetes-induced increase in 

luciferase mRNA, which was completely blocked by treatment with A-285222 (Figure 4D). 

The effect of the blocker is unlikely due to effects on glucose metabolism, since neither blood 

glucose nor body weight were affected by the treatment (Supplemental Figure 4A-B). In line 

with previous work from our lab in which a streptozotocin-induced diabetes model was used 

(5; 6),  NFAT-luciferase activity was significantly enhanced in the aortic arch of 

Akita/NFAT-luc mice when compared to WT/NFAT-luc controls, and it was completely 

abolished by A-285222 (Supplemental figure 4C). A similar pattern was observed in the 

abdominal aorta and carotid arteries (Supplemental figures 4D-E). No effects of the 

treatment were observed in the non-diabetic mice (Figures 4C-D; Supplemental figures 4C-

D).

In vivo inhibition of NFAT with A-285222 enhances eNOS expression and plasma NO 

levels

To elucidate the mechanism underlying the effects of NFAT signaling inhibition on 

microvascular function, we measured eNOS expression in the dermis of Akita/NFAT-luc and 

WT/NFAT-luc mice after treatment with A-285222 or vehicle. Although we could not detect 
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diabetes-driven changes in eNOS  expression at the mRNA level (Figure 5A), both eNOS and 

p-eNOS protein expression were lower in Akita mice compared to non-diabetic WT mice 

(Figure 5B). Interestingly,  a clear upregulation of eNOS mRNA expression was observed in 

diabetic mice directly after treatment with A-285222. Although not significant, eNOS mRNA 

seemed to remain elevated at 9 weeks after the end of the treatment (Figure 5A), but no 

significant changes were detected at the protein level (Figure 5B). Consistent with the 

elevated eNOS mRNA levels in the dermis, higher circulating levels of NO were found after 

treatment with A-285222 (“Post-2”) in the same Akita mice that exhibited improved 

endothelial function, when compared with vehicle-treated Akita mice (Figure 5C). 

Immunohistochemistry confirmed expression of eNOS protein in the wall of skin 

microvessels in these mice (Figure 5D).

 

To assess whether the effects on NFAT-transcriptional activity and eNOS expression induced 

by systemically administered A-285222 could be attributed, at least in part, to local effects of 

the blocker on the skin, we organ cultured intact skin samples from NFAT-luc mice using a 

protocol that has been shown to preserve both skin function and structure. (19)  Culture of the 

skin with A-285222 (1 µmol/L) for 24 hours resulted in significantly reduced luciferase 

mRNA and a concomitant increase in eNOS mRNA expression measured in the dermis 

fractions (Figures 5E-F). Organ culture of the skin had per se an impact on eNOS and p-

eNOS expression in the dermis, with significantly increased expression levels at 24 hours of 

culture, but levels no different from those measured in freshly dissociated dermis at 48 hours 

(Supplemental figure 5). At 48 hours, eNOS protein expression was significantly higher in 

samples that had been cultured with A-285222 compared to controls, while no significant 

changes were found in p-eNOS protein expression (Figure 5G). In vivo inhibition of NFAT 
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prevents the induction of inflammatory cytokines, lowers plasma endothelin-1 (Et-1) 

and blood pressure and improves survival of diabetic mice

The improved microvascular responses to ACh and localized heat observed in Akita mice 

after treatment with A-285222 were accompanied by significantly reduced plasma levels of 

the pro-inflammatory cytokines IL-6, OPN and the endothelial activation marker soluble 

intercellular adhesion molecule 1 (sICAM) directly after the intervention (“Post-1”), while 

other cytokines or markers (e.g. IL-1α, IL-10, E-selectin) were unaffected (Figure 6A-F). The 

inhibitory effect of the blocker on IL-6 and OPN remained evident 4 weeks after the 

intervention (“Post-2”). Except IL-1α, all other plasma molecules increased during the study 

protocol in the vehicle treated mice as they aged (Figures 6A-F).  Despite elevated levels of 

circulating IL-6 and OPN, we could not detect changes in the levels of IL-6 or OPN mRNA in 

the dermis of diabetic or WT mice treated with A-285222 (Supplemental figure 6) 

In addition to increased levels of circulating NO (Figure 5C), plasma Et-1 was significantly 

reduced 4 weeks after treatment with A-285222 when compared to levels in vehicle treated 

Akita mice (Figure 7A). At the same time point, both systolic and diastolic blood pressure 

was significantly lower in A-285222 treated Akita mice compared with vehicle treated mice 

(Figure 7B-C). There was no significant difference in heart rate between groups (445±51 vs. 

424±43 beats per minute vehicle vs. A-285222, p=0.767). Treatment with the NFAT blocker 

A-285222 had no effect on plasma levels of inflammatory cytokines or Et-1 in control non-

diabetic wild-type mice (Supplemental figure 7).

As the study progressed, many of the Akita mice appeared ill and ~40% either died or had to 

be euthanized before completion of the study because of failure to thrive (Figure 7D). Even 

though Kaplan-Meier curves were not statistically different between the two groups, all mice 
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treated with A-285222 survived until termination of the study (Figure 7D, p=0.0817). Figure 

7E shows survival data from an independent study conducted for another project, which 

included 33 Akita mice (C57BL/6J background; mixed genders) that were treated with A-

285222 or vehicle for 4 weeks as in this current study. In line with the data in Figure 7D, all 

A-285222 treated mice survived until termination of the study, whereas a substantial number 

of vehicle treated mice died or had to be euthanized (Figure 7E). Differences between 

survival curves were statistically significant (Figure 7E, p=0.0299) and remained significant 

even if only male mice are included in the analysis (p=0.0085; N=16).
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Discussion

The findings from the present in vivo study show that diabetes is associated with an increase 

in NFAT-dependent transcriptional activity and microvascular dysfunction which can be 

significantly improved by blocking of NFAT activation. The improvement in microvascular 

responses was associated with a reduction in vascular NFATc3 nuclear accumulation and 

NFAT-dependent transcriptional activity in the skin and it was mediated largely through 

increased NO availability. Our results point at the NFAT signaling as a novel pathway 

involved in the development of microvascular dysfunction in diabetes. Blocking of 

hyperglycemia-induced NFAT transcriptional activity with A-285222 leads to an 

improvement in microvascular function which in combination with the observed reduction in 

circulating pro-inflammatory cytokines and Et-1 levels may contribute to lower blood 

pressure and increased survival of the mice. 

We believe our findings of improvements in the skin microcirculation following blocking of 

NFAT activation have clinical significance. Measurement of skin microvascular responses to 

iontophoresis of ACh and localized heating using laser Doppler imaging has proven a 

successful strategy to monitor and predict diabetic complications in clinical studies. Skin 

microvascular function is significantly impaired in patients with diabetic retinopathy 

compared to those without complications (25; 26) and in young children with diabetes before 

clinical signs of microangiopathy. (27) Furthermore, skin microvascular responses are 

strongly correlated to insulin sensitivity, coronary heart disease and its risk factors. (28) 

Role of NFAT in Skin Microvascular Dysfunction

Most NFAT-related studies in the context of skin have focused on the role of NFATc2 in 

epidermal keratinocytes in skin diseases such as psoriasis. (29-31)  The absolute 
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quantification experiments unexpectedly revealed that NFATc3 is the predominant NFAT-

isoform in both dermis and epidermis (Figure 3C). This is interesting considering that 

NFATc3 seems to be the dominant NFAT isoform in all other vascular beds that we have 

examined so far, including cerebral, retinal, carotid, aorta, hepatic, renal, femoral, mesenteric 

arteries and portal vein (unpublished results and (14; 18; 32)) also, considering that NFATc3 

is readily activated by elevated extracellular glucose. (4-6; 32) 

The predominance of this particular NFATc3 isoform in the dermis, where the microvessels 

are mainly located and the increased NFAT-transcriptional activity observed in the Akita 

mice, suggest that NFAT activation could be contributing to the observed deterioration in 

microvascular responses. Worth noting though is that differences in baseline microvascular 

responses to ACh between WT and diabetic mice were noticeable already at 7-12 weeks of 

age, while we could only dissect the difference in whole skin NFAT-luciferase activity 

beyond 12 weeks of age. This could be due to limitations of the technique when using whole-

skin homogenates compared to the better resolution obtained when using isolated dermis 

(please see comparison between Figures 4C and D), but also most likely due to engagement 

of other hyperglycemia-induced factors recognized as drivers of endothelial dysfunction early 

on in the process, perhaps increased oxidative stress (33; 34) and inflammation. (35)

Despite potentially multiple pathways driving the deterioration in microvascular responses in 

the diabetic mice, we found a clear improvement in skin microvascular function after 

inhibition of NFAT signaling with A-285222. Treatment effects could be attributed to 

changes in NFAT activity as demonstrated by the reduction in NFATc3 nuclear accumulation 

in skin microvessels and by reduced NFAT-dependent transcriptional activity, as assessed by 

NFAT-luciferase activity and luciferase mRNA expression in the dermis. Importantly, the 
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decreased NFAT activation and improved microvascular function were not due to a glucose 

lowering effect of the NFAT blocker.

Role of NO in the improved Microvascular Responses after NFAT inhibition

In agreement with our previous findings demonstrating that the skin microvascular response 

to iontophoresis of ACh in mice is mediated through NO, (12) we show here that the 

improvement in microvascular responses to ACh immediately following 4 weeks’ inhibition 

of NFAT with A-285222 and maintained for 4 weeks after the end of treatment, is due to 

enhanced production of NO in the diabetic mice compared with vehicle treated mice. This 

was evidenced by abrogation of the improved microvascular response following inhibition of 

NO production by L-NAME. The improvement in microvascular responses to ACh comes 

from endothelium-derived NO and not from a generalized improvement in smooth muscle 

responsiveness. Further support for increased NO bioavailability after treatment with A-

285222, comes from the finding of improved sustained maximum vasodilator response to 

localized heating, which is largely mediated through an NO-dependent pathway. (24) In 

addition to a significant decrease in NFAT activation in the dermis of diabetic mice after 

treatment with A-285222, as evidenced by decreased luciferase mRNA, we found significant 

upregulation of eNOS expression, which further supports the role of NFAT signaling in 

mediating microvascular responses via increased NO bioavailability. Collectively, these data 

suggest that inhibition of NFAT with A-285222 leads to enhanced NO bioavailability in the 

skin of Akita mice, rather than affecting the downstream smooth muscle response to NO.

While our data supports the idea that inhibition of NFAT-transcriptional activity increases NO 

bioavailability in the skin microvasculature and while positive eNOS immunostaining was 

found in skin microvessels, we cannot exclude the possibility of A-285222 affecting other 
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potential NO producing cells in the skin. Mowbray et al (36) demonstrated the presence of 

enzyme-dependent NO production in all cell types of human skin, including keratinocytes, 

melanocytes and immune cells but did not attribute storage site to any particular cell. 

Treatment with A-285222 was also associated with significantly elevated plasma NO in 

diabetic mice, which raises the question of whether the improved microvascular response was 

the result of systemic or local effects of the drug on the skin. While our findings cannot 

exclude systemic effects (discussed in the next section), the organ culture experiments 

showing significantly decreased NFAT-dependent transcriptional activity and concomitantly 

increased eNOS mRNA and protein expression in the dermis after overnight culture of whole 

skin with A-285222 certainly support the idea that at least part of the improved microvascular 

function observed in vivo could be attributed to local effects of the drug on NFAT activity in 

the skin. We did not observe any effects of NFAT inhibition on the levels of p-eNOS, 

suggesting a regulatory role in the expression but not the activity of eNOS.

Our findings are at odds with findings from other studies. Yang et al reported vascular 

endothelial growth factor (VEGF)-induced activation of calcineurin/NFAT signaling in 

endothelial progenitor cells (EPCs), which lead to increased eNOS protein expression and NO 

production, while inhibition of calcineurin with cyclosporine A or inhibition of NFAT with 

11R-VIVIT decreased eNOS protein levels and NO production. (37) This discrepancy could 

be due to cell specific differences between circulating EPCs (obtained by culture of 

mononuclear cells from human peripheral blood) and microvascular cells in situ regarding the 

NFAT isoform engaged in the regulation of NO (NFATc1 in theirstudy), or differences in the 

transcriptional program engaged by the different stimuli (VEGF vs hyperglycemia in our 

study) or combinations thereof. We and others have previously demonstrated that NFAT 
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isoforms co-expressed in the same cell type can be differentially regulated by the same stimuli 

and that much of what determines the efficiency of the stimulus is the ability to deliver an 

appropriate pattern of intracellular calcium signaling in combination with precise regulation 

of NFAT export kinases (17; 38-40). In pancreatic acinar cells for example, we showed that 

NFATc3 but not NFATc1 is readily activated by cholecystokinin or by ACh. (41) Another 

example of differential control of NFAT isoforms is illustrated by the dramatic NFATc3 

activation in the endothelium of retinal microvessels after acute hyperglycemia and the 

complete lack of NFATc2 response to elevated extracellular glucose in retinal endothelial 

cells. (32) Our data cannot rule out that the effects of A-285222 on microvascular function 

can be mediated by the other NFATc isoforms, despite NFATc3 being the predominant 

isoform in this preparation and one readily inhibited by treatment with A-285222. 

In another elegant study demonstrating the importance of inositol 1,4,5-triphosphate receptor 

1(IP3R1) for activation of eNOS in endothelial cells and maintenance of blood pressure, Yuan 

et al proposed that the increased eNOS expression and phosphorylation downstream the 

IP3R1 is mediated via calcineurin/NFATc3 signaling. (42) While they provide solid evidence 

for the involvement of IP3R1 in eNOS activation, the involvement of NFATc3 is less well-

supported. Conclusions are based on confocal microscopy measurements of NFATc3 nuclear 

accumulation in a limited number of HUVEC cells, a cell-type of questionable relevance for 

blood pressure control, without further confirmation of changed NFAT-dependent 

transcriptional activity as a consequence of the nuclear translocation. Because calcineurin not 

only interacts with NFAT but also with a large number of substrates, (43) calcineurin 

inhibitors (i.e. CsA used by Yuan et al, and FK506) are ambiguous tools for dissecting the 

potential involvement of NFAT signaling. Instead, the A-285222 compound used here has 

Page 19 of 50

For Peer Review Only

Diabetes



20

been shown to maintain NFAT in a phosphorylated state without affecting calcineurin 

phosphatase activity. (23) 

The Role of NFAT and eNOS in the skin in Blood Pressure Regulation

Our findings in the skin have potential translational importance to the regulation of blood 

pressure. The skin can be considered as one of the largest organs in the body and by virtue of 

its large NO storage capacity, the potential for regulation of blood pressure by the skin 

microcirculation has come under recent interest. (44) Indeed, our data would support such an 

idea since changes in NFAT-transcriptional activity and eNOS expression after treatment with 

A-285222 were associated with a significant reduction in blood pressure, although it is also 

possible that the blood pressure lowering effects of NFAT blocking could arise from changes 

in vascular function in areas other than the skin or in combination with changes in the skin. 

Santana et al have demonstrated a role of NFATc3 in mediating angiotensin II-induced 

hypertension via down-regulation of the beta1 subunit of large conductance, calcium-

activated K+ channels and Kv1.2 channels in arterial smooth muscle. (45; 46) Interestingly, 

treatment with A-285222 resulted not only in increased eNOS expression in the skin but also 

in elevated circulating NO levels. This is in line with what others have shown, namely that 

serum total NO-related products correlate directly with those of the upper dermis. (47)  

Even though the organ culture experiments support the idea of a local direct effect of A-

285222 on NFAT activity and eNOS production, it is possible that parallel systemic effects of 

the blocker or local effects elsewhere than in the skin could lead to changes in circulating 

molecules which are capable of affecting microvascular function and blood pressure. We did 

indeed measure an effect of A-285222 treatment on plasma levels of inflammatory cytokines 

and Et-1.
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In conclusion, we have shown in this in vivo study, with the advantage of longitudinal 

measurements of microvascular function at different time points in the same animals that 

hyperglycemia-induced NFAT activation is associated with endothelial dysfunction in the 

microcirculation, which can be markedly improved by therapeutic blocking of NFAT 

activation. The improvement in endothelial function is largely mediated through increased 

availability of NO and this, combined with a more anti-inflammatory phenotype and reduction 

in blood pressure, might underlie the increased survival of A-285222-treated mice. Further 

studies should explore the potential of NFAT inhibition as a novel therapeutic modality for 

the treatment of diabetic microvascular dysfunction. 
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Figure Legends

Figure 1. In vivo treatment with the NFAT blocker A-285222 restores endothelial 

function in diabetic mice. (A) Study protocol: Akita mice were randomized based on body 

weight to receive daily i.p. injections of A-285222 (0.29 mg/kg) or vehicle (saline) for 4 

weeks (hatched bar) and skin microvascular responses were assessed blinded either before 

(Pre), directly after (Post-1) or 4 weeks after the end of treatment (Post-2). (B) Blood flow 

changes in response to iontophoresis of 1% phenylephrine (PE) for 5 min (current 100 µA) 

followed by iontophoresis of 2% ACh for 10 min (current 100 µA) in Akita vs. WT  mice, 

***p<0.001. (C-E) Microvascular responses to PE and ACh iontophoresis in mice treated as 

in A, before treatment (n.s., C), directly after treatment (*p<0.05, D) and 4 weeks after 

(**p<0.01, E). Data in B-E are presented as % of baseline blood flow, as determined prior to 

initiation of iontophoresis. (F) Maximum responses to ACh at each time-point, calculated as 

the difference between maximum vasodilation to ACh and maximum vasoconstriction to PE 

(**p<0.01 Akita A-285222 vs. vehicle). (G) Blood glucose and (H) body weight during the 

study protocol. N=8-22 mice/group.

Figure 2. Improved skin microvascular function by A-285222 is NO dependent. (A) 

Summarized data showing skin microvascular response to iontophoresis of ACh after pre-

treatment with L-NAME (i.p.; 20 mg/kg body weight), 30 min prior to laser Doppler imaging. 

Dashed line represents the ACh response in A-285222 treated mice in the absence of L-

NAME at the same time point. (B) Summarized data showing skin microvascular response to 

iontophoresis of 2% SNP iontophoresed for 10 min (current=100 μA). Dashed line represents 

the ACh response in vehicle-treated mice in the absence of SNP at the same time point. Data 

in A-B are the difference between maximum vasodilation to ACh or SNP and maximum 
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vasoconstriction to phenylephrine (PE). (C-D) Skin microvascular response to localized 

heating (42°C; 1°C/min) in Akita mice before (n.s., C) and immediately after treatment 

(*p<0.05, D) as described in Figure 1A. Data is presented as % of basal blood flow prior to 

heating.  (E) Summarized data from measurements in (D) showing the maximum vasodilation 

in response to localized heating, ***p<0.001 (F) Longitudinal change in maximum 

vasodilation in response to localized heating expressed as the difference between 

measurements before (Pre) and after (Post-1) treatment with A-285222 or vehicle, 

***p<0.001. N=5-16 mice/group.

Figure 3. NFATc3 is the predominant NFAT isoform expressed in mouse skin.  (A) 

Whole mouse skin flat preparation (dermis face up) showing skin microvessels and a dashed 

circle representing the size of the area analyzed in laser Doppler imaging experiments. Scale 

bar=5 mm. (B) H&E stained cross sections of mouse skin showing microvessels (arrowheads) 

in the dermis layer (“D”). Epidermis (“E”); scale bars upper panels=500 μm, lower 

panels=100 μm. (C) Absolute quantification of NFATc1-c4 mRNA in dermis and epidermis 

from non-diabetic C57Bl/6J mice, expressed as billion (109) copies per μg total RNA. N=3 

mice/preparation. (D) Gene expression analysis of NFATc1-c4 isoforms mRNA by qPCR in 

the dermis from non-diabetic WT/NFAT-luc and diabetic Akita/NFAT-luc mice. N=5 

mice/group (E) Representative confocal images of skin whole mounts showing CD31 and 

NFATc3 (red) staining in microvessels. Nuclei are stained with SYTOX Green. Bar=50 μm. 

(F) NFAT-dependent transcriptional activity in dermis (“D”) and epidermis (“E”) 

homogenates from NFAT-luc mice, expressed as relative luciferase units (RLU) per µg of 

protein. Dashed line indicates NFAT-dependent transcriptional activity in whole skin. N=5 

mice/group. (G) Representative immunoblot showing expression of CD31 in whole skin 
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(“WS”), dermis (“D”) and epidermis (“E”) from non-diabetic C57Bl/6J mice. α-tubulin was 

used as loading control. 

Figure 4. A-285222 decreases NFATc3 nuclear accumulation in skin microvessels. (A) 

Representative confocal images showing NFATc3 nuclear accumulation in skin microvessels 

from Akita mice 4 weeks after treatment with vehicle (upper panels) and A-285222 (lower 

panels) as described in Figure 1A. Left panels in both rows are pseudo colored images 

showing NFATc3 nuclear accumulation in white; middle and right panels are original images 

showing the  DNA binding dye SYTOX Green (green) and NFATc3 (red), respectively. Scale 

bar=10 μm. (B) Summarized data from experiments in A showing percentage of cells 

exhibiting NFATc3 nuclear accumulation in skin microvessels (*p<0.05). N=5-7 mice/group 

with at least 100 cells examined per animal. (C) NFAT-dependent transcriptional activity in 

whole skin homogenates from wild type (WT)/NFAT-luc and Akita/NFAT-luc mice 9 weeks 

after completion of the treatment with A-285222 (0.29 mg/kg and day for 4 weeks) or vehicle. 

Data is expressed as relative luciferase units (RLU) per μg of protein. (D) Gene expression 

analysis of luciferase mRNA by qPCR in dermis from WT/NFAT-luc and Akita/NFAT-luc 

mice after treatment as in (C). HPRT and cyclophilin B were used as endogenous controls and 

data is expressed as percentage of vehicle treated WT/NFAT-luc mice. *p<0.05 vs WT and 

#p<0.05 vs Akita. N=4-7 mice/group. 

Figure 5. NFAT inhibition with A-285222 enhances eNOS expression and plasma NO 

levels. (A) Gene expression analysis of eNOS mRNA by qPCR in dermis from WT/NFAT-

luc and Akita/NFAT-luc mice directly after (Post-1) and 9 weeks after (Post-2) treatment with 

A-285222 or vehicle. HPRT and cyclophilin B were used as endogenous controls and data is 

expressed as percentage of vehicle treated WT/NFAT-luc mice. N=4-10 mice/group (B) 
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Summarized data and representative immunoblots from Western blot experiments showing 

eNOS (left) and p-eNOS (middle) protein expression, as well as p-eNOS/eNOS ratio (right) in 

the dermis of non-diabetic WT/NFAT-luc and diabetic Akita/NFAT-luc mice, 9 weeks after 

A-285222 or vehicle treatment. Results are expressed as percentage of vehicle treated 

WT/NFAT-luc mice. *p<0.05 and **p<0.01 vs WT. N=11-15 mice/group. (C) Plasma nitric 

oxide (NO) levels in Akita mice four weeks after treatment with A-285222 or vehicle as 

described in Figure 1A. N=5 mice/group (D) Immunohistochemistry images showing eNOS 

protein expression in skin microvessels directly after treatment with A-285222 (Post-1) as 

described in A. Bar=5 μm. (E-F) Gene expression analysis of luciferase (D) and eNOS (E) 

mRNA in dermis from WT/NFAT-luc mice after 24h whole skin organ culture in the presence 

or absence of A-285222 (1 µmol/L. *p<0.05 and **p<0.01 vs vehicle treated mice of the 

same genotype). N=7-8 mice/group. (G) Summarized data from Western blot experiments 

showing eNOS (left) and p-eNOS (middle) protein expression, as well as p-eNOS/eNOS ratio 

(right) in the dermis after whole skin organ culture for 48h with or without A-285222 (1 

µmol/L). Included also is a representative immunoblots of eNOS and p-eNOS protein 

expression in fresh and cultured dermis with or without A-258222. Data is expressed as 

percentage of the fresh sample. *p<0.05; N=10 for fresh and N=8 mice/group for cultured 

samples. 

Figure 6. NFAT inhibition with A-285222 prevents diabetes-induced increase of 

inflammatory plasma cytokines and endothelial activation markers. Summarized plasma 

levels of (A) IL-6, (B) osteopontin, (C) sICAM, (D) IL-1α, (E) IL-10 and (F) E-selectin in 

Akita mice measured before (Pre), directly after (P1= Post-1), and four weeks after (P2= Post-

2) treatment with A-285222 (0.29 mg/kg and day) or vehicle as outlined in Figure 1A.  

*p<0.05, **p<0.01 and ***p<0.001 vs Akita. N=6-22 mice/group. 
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Figure 7. In vivo treatment with A-285222 improves blood pressure and survival in 

Akita mice. (A) Plasma endothelin-1 levels four weeks after (Post-2) treatment with A-

285222 (0.29 mg/kg and day) or vehicle as outlined in Figure 1A. N=13-15 mice/group. (B) 

Systolic and (C) diastolic blood pressure measured non-invasively four weeks after A-285222 

treatment as described in (A); *p<0.05 and **p<0.01. N=4-7 mice/group. (D) Kaplan-Meier 

curves showing survival of Akita mice treated with A-285222 or vehicle as described in 

Figure 1A (p=0.0817). N=7-8 mice/group (E) Kaplan-Meier curve showing survival data 

from an independent study conducted for another project (C57BL/6J background; mixed 

genders) treated as outlined in Figure 1A (p=0.0299). Mean age at the start of the 

experiments=14 weeks; N=15-18 mice/group.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure S1
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Figure S1. In vivo treatment with the NFAT blocker A-285222 has no effect on skin microvascular responses to acetylcholine, blood glucose
levels or body weight in non-diabetic wild-type mice (A) Study protocol: Wild type mice received daily i.p. injections of A-285222 (0.29 mg/kg) or
vehicle (saline) for 4 weeks (black bar) and skin microvascular responses were assessed either before (Pre), directly after (Post-1) or 4 weeks after the
end of treatment (Post-2). (B-D) Microvascular responses to iontophoresis of phenylephrine (PE) and acethylcholine (ACh) in mice treated as in A,
before treatment (B), directly after treatment (C) and 4 weeks after (D). Data in B-D are presented as % of baseline blood flow, as determined prior to
initiation of iontophoresis. (E) Maximun responses to ACh at each time-point, calculated as the difference between maximum vasodilation to ACh and
maximum vasoconstriction to PE. (F) Blood glucose and (G) body weight during the study. N=7-10 mice/group.
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Figure S2
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Figure S2. Treatment with the NFAT blocker A-285222 has no effect on skin microvascular responses to localized heating in non-
diabetic wild-type (WT) mice. (A) Skin microvascular response to iontophoresis of ACh after pre-treatment with L-NAME (i.p. 20 mg/kg body
weight) were not affected after A-285222 treatment in WT mice. (B) Summarized data showing skin microvascular response to iontophoresis of
SNP. Data showed in A and B are the difference between maximum vasodilation to ACh or SNP and maximum vasoconstriction to
phenylephrine (PE). Microvascular response to localized heating (42oC, 1ºC/min ) in WT mice before (C) and immediately after treatment (D).
Data is presented as % of basal blood flow prior to heating. (E) Summarized data from measurements in (D) showing the maximum
vasodilation in response to localized heating. (F) Longitudinal change in maximum vasodilation in response to localized heating expressed as
the difference between measurements before (Pre) and after (Post-1) treatment with A-285222 or vehicle, N=6-9 mice/group.
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Figure S3
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Figure S3. Age-dependent increase in NFAT transcriptional activity in the skin of Akita mice. (A) Diabetic Akita/NFAT-luc and non-
diabetic WT/NFAT-luc littermate mice were euthanized at 4, 8, 12 and 24 weeks of age (N=6 mice/group) and skin harvested for
measurements of NFAT-dependent transcriptional activity. Data is expressed as relative luciferase units (RLU) per µg of protein. (B-D)
Animals in (A), along with non-TG littermates were monitored weekly for blood glucose (B), body weight (C) and urine was collected for
measurements of albumin-to-creatinine ratio (ACR, D). *p<0.05, **p<0.01 and ***p<0.001 vs. WT. N=6-13 mice/group.
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Figure S4
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Figure S4. NFAT-dependent transcriptional activity is increased in vessels from diabetic Akita mice and this is
prevented by treatment with A-285222. (A) Blood glucose and (B) body weight monitored weekly in WT/NFAT-luc and
Akita/NFAT-luc mice treated with vehicle or A-285222 (0.29 mg/kg and day during weeks 11-15 of age). N=4-16 mice/time-
point. (C-E) NFAT luciferase activity was measured in the aortic arch (C), abdominal aorta (D), and carotid arteries (E)
from mice described in A-B. Data is expressed as relative luciferase units (RLU) per µg of protein. *p<0.05 vs. WT and
#p<0.05 vs. Akita. N=4-7 mice/group.
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Figure S5. Time-dependent effects on eNOS and p-eNOS protein expression in the dermis
during organ culture of skin intact samples. Intact skin samples from non-diabetic mice were frozen
either fresh or after culture for 6, 12, 24 and 48 hours in DMEM. Upper panels show representative
immunoblots for eNOS and p-eNOS protein for fresh tissue and for the various time points in culture.
Graphs below show summarized results from western blot experiments for eNOS and p-eNOS
normalized to total protein and for p-eNOS/eNOS ratio. Data is expressed as percentage of the fresh
sample for each animal to assess whether culture per se and/or time in culture had any impact on
expression, irrespective of the basal level of expression in each animal before culture. Expression of p-
eNOS was significantly increased at 24h (*p<0.05; N=10 for fresh, N=4 mice/group for 6 and 12h and
N=8 mice/group for 24 and 48h).
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Figure S6
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Figure S6 No significant changes in the expression of OPN or IL-6 in the dermis of diabetic Akita and non-diabetic wild-type mice
after in vivo treatment with A-285222. Gene expression analysis of IL-6 (A) and osteopontin (B) mRNA by qPCR in dermis from
WT/NFAT-luc and Akita/NFAT-luc mice after treatment (“Post-2”) with A-285222 NFAT blocker or vehicle. HPRT and cyclophilin B were
used as endogenous controls and data is expressed as percentage of vehicle treated WT/NFAT-luc mice. N=4-7 mice/group.
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Figure S7
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Figure S7. NFAT inhibition with A-285222 has no effect on the levels of circulating plasma cytokines in non-
diabetic wild-type (WT) mice. (A) Plasma levels of (A) IL-6, (B) osteopontin, (C) sICAM, (D) IL-1α, (E) IL-10 and (F)
Endothelin-1 in WT mice measured before (Pre), directly after (P1=Post-1), and four weeks after (P2= Post-2) treatment
with A-285222 (0.29 mg/kg a day) or vehicle. N=6-9 mice/group.
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Online Data Supplement 

Adult heterozygous diabetic Akita (Ins2+/−) mice were used (stock number 007562; D2.B6 
background; The Jackson Laboratory, Maine). FVBN 9x-Nuclear Factor of Activated T-cells (NFAT)-
luciferase reporter (NFAT-luc) mice1-3 and Akita mice (stock number 003548, C57BL/6J background, 
The Jackson Laboratory) were used to generate Akita/NFAT-luc mice and non-diabetic wild-type 
(WT)/NFAT-luc littermates, backcrossed at least four generations into the C57BL/6J background. 
Animals had free access to tap water and were fed normal chow diet. Blood glucose (CONTOUR® 
meter; Bayer) and body weight were monitored weekly. Because of the limited hyperglycemia 
observed in Akita female mice, male mice were studied for all parts of the study except for the 
Kaplan-Meier survival curves in Figure 7E that includes data from both sexes. Mice were euthanized 
by cervical dislocation after anesthesia with 3% isoflurane in oxygen (2 L/min). For NFAT-luciferase 
experiments, mice were anaesthetized by intraperitoneal (i.p.) injection of 7.5 mg ketamine 
hydrochloride and 2.5 mg xylazine per 100 g body weight and euthanized by exsanguination through 
cardiac puncture. All animal protocols in this study were performed in accordance with UK Home 
Office regulations (Project License PIL60/4265) and the Malmö/Lund Animal Care and Use 
Committee (Permits M78-10, M29-12, and M9-15) and abided by the Guide for the Care and Use of 
Laboratory Animals published by the Directive 2010/63/EU of the European Parliament.

Laser Doppler imaging, iontophoresis and localized heating

The study protocol is shown in Figure 1A. Akita mice were randomized based on body weight to 
receive daily i.p. injections of the NFAT blocker A-285222 (0.29 mg/kg body weight) or vehicle 
(saline) for 4 weeks. Microvascular function was assessed blinded and non-invasively, before (“Pre”; 
at 7-12 weeks of age), directly after (“Post-1”)- or 4 weeks after (“Post-2”) the end of the treatment, 
using a laser Doppler imager (LDI; moorLDI, Moor Instruments Ltd, Axminster, UK) as previously 
described 4, 5. In brief, 2 days prior to the measurements, fur was removed from the flank area of the 
mouse by shaving and with depilatory cream (Veet® Reckitt-Benckiser, Søborg, Danmark). General 
anesthesia was induced (5% isoflurane in 2 L/min oxygen) and maintained during the procedures (1.5-
2% isoflurane in 1.5 L/min oxygen), and body temperature was maintained at 37°C using a heat mat. 

For assessing microvascular responses to acetylcholine (ACh), an iontophoresis chamber (ION6 
probe, Moor Instruments Ltd, Axminster, UK) was attached to the flank and a reference electrode pad 
attached to the underside of the animal to complete the iontophoresis circuit. To standardize basal 
perfusion, blood vessels were pre-constricted with iontophoresis of 1% phenylephrine (PE) for 5 min 
(current=100 μA), followed by iontophoresis of 2% ACh for 10 min (current=100 μA). At a different 
site on the opposite flank, 2% sodium nitroprusside (SNP) was iontophoresed for 10 min (current=100 
μA). To determine the contribution of endothelium-derived nitric oxide (NO) to ACh-mediated 
vasodilatation, microvascular responses to ACh were assessed 30 min after i.p. injection of the non-
selective inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME, Sigma Chemicals; 
20 mg/kg). 4 On a separate day and to determine the maximum microvascular dilator capacity, a 
hyperemic response was initiated by localized heating of the skin using a specially designed heating 
probe (SH02™ skin heating unit and SHP3 probe, Moor Instruments Ltd, Axminster, UK). Perfusion 
was measured continuously as the temperature of the heating probe was increased to 42°C (1°C/min) 
and maintained for >10 min, which was sufficient for maximum vasodilatation to plateau.

The LDI scans continuously during the iontophoresis and localized heating periods and provides a 
measure of microvascular perfusion (in arbitrary perfusion units). Color-coded images were generated 
for each perfusion scan and numerical outputs were produced (moorLDI software version 5.2) and 
analyzed using proprietary software (Moor Instruments, version 5.3). The vascular response to ACh, 
PE and heating is presented as the percentage change from basal perfusion measured during 5 scans 
prior to the application of PE or initiation of heating. Endothelium-dependent and –independent 
vasodilation in response to ACh or SNP, respectively, was calculated as the difference between 
maximum vasodilation in response to ACh or SNP and maximum vasoconstriction in response to PE. 
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The response to localized heating was expressed as the percentage change in perfusion from baseline 
measurements to maximum vasodilation.

NFAT-dependent transcriptional activity

Diabetic Akita/NFAT-luc and non-diabetic WT/NFAT-luc littermate mice were euthanized at 4, 8, 12 
and 24 weeks of age (N=6 mice/group) and skin harvested for measurements of NFAT-dependent 
transcriptional activity. A separate group of Akita/NFAT-luc and WT/NFAT-luc mice received daily 
i.p. injections of the NFAT blocker A-285222 (0.29 mg/kg body weight) or vehicle (saline) for 4 
weeks (starting at 8-11 weeks of age). Mice were euthanized either directly after the treatment or 9 
weeks after completion of the treatment. At termination, the aortic arch, abdominal aorta, carotid 
arteries and skin were collected and dissected free from surrounding tissue in ice-cold Ca2+-free 
physiological saline solution (PSS; containing in mmol/L: NaCl, 135; KCl, 5.9; MgCl2, 1.2; Hepes, 
11.6; glucose, 2.0; pH 7.4). Luciferase activity was measured in tissue homogenates as previously 
described 2. Optical density was measured using a Tecan INfinite M200 instrument (Tecan Nordic AB, 
Mölndal, Sweden) and data is expressed as relative luciferase units (RLU) per μg of protein, as 
assessed using EZQ protein quantification kit (Molecular Probes, Invitrogen, Paisley, UK) or DC 
Protein Assay (Bio-Rad Laboratories, Sundbyberg, Sweden). 

Histology and confocal microscopy

Skin biopsies from the flank of the mice were fixed overnight in 4% formaldehyde in phosphate-
buffered saline (PBS, pH 7.4), and either dehydrated and paraffin embedded for sectioning (5 µm) or 
processed as whole mounts for immunostaining. Sections were used for histology (hematoxylin and 
eosin; H&E), for quantification of NFATc3 nuclear accumulation using confocal microscopy or for 
immunohistochemistry of endothelial nitric oxide synthase (eNOS). For NFATc3 staining, sections 
were subjected to heat induced epitope retrieval using citrate buffer (10 mmol/L; pH 6.0) and stained 
as previously described.1 Briefly, sections were permeabilized with 0.2% Triton X-100 in PBS, 
blocked for 2h with 2% bovine serum albumin (BSA) in PBS and incubated with rabbit polyclonal 
anti-NFATc3 (sc-8321, 0.2 μg/mL, Santa Cruz Biotechnology, Santa Cruz, CA) overnight at 4°C, 
followed by incubation with Cy5 anti-rabbit IgG (3 μg/mL, Jackson Immuno Research, West Grove, 
PA) for 1h at room temperature. Nuclei were stained with SYTOX green (Molecular Probes, 
Invitrogen, Paisley, UK). For eNOS staining, sections were incubated with 0.3% H2O2 in methanol for 
30 min to eliminate endogenous peroxidase activity, then rinsed with PBS, blocked with 10% normal 
goat serum for 1h and incubated with rabbit polyclonal anti-eNOS antibody (0.125 μg/mL, sc-654 
Santa Cruz Biotechnology) or non-immune rabbit IgG (0.125 μg/mL, ab27478, Abcam, Cambridge, 
UK) overnight at 4°C. Biotinylated goat anti-rabbit IgG antibody (0.75 µg/mL, BA-1000, Vector 
Laboratories, Burlingame, CA) and Vectastain Elite ABC kit (PK-6100, Vector laboratories, 
Burlingame, CA) were used for visualization. Sections were counterstained with Mayer’s 
hematoxylin, examined at 100X (Nikon Eclipse E800 microscope; Nikon, Tokyo, Japan) and imaged 
with a Nikon DS-5Mc camera, using Nikon DS-U1 control unit and NIS-Elements v3.22.

Whole mounts were permeabilized with 0.5% Triton X-100 in PBS and blocked for 2h with 2% BSA 
in 0.2% Triton X-100 in PBS prior incubation with anti-NFATc3 (sc-8321, 0.2 μg/mL, Santa Cruz 
Biotechnology) or anti- cluster of differentiation 31 (CD31; sc-1506, 0.8 μg/mL, Santa Cruz 
Biotechnology) for 48 hours at room temperature, followed by incubation Cy5 anti-rabbit IgG (3 
μg/mL; Jackson Immuno Research). Nuclei were stained with SYTOX green. Whole mounts and 
sections were examined at 20X and 63X, respectively using a Zeiss LSM 5 laser scanning confocal 
microscope. Specificity of immune staining was confirmed by the absence of staining when primary 
antibodies were omitted from the protocol. NFATc3 nuclear accumulation in skin microvessels was 
quantified as previously described. 2, 6, 7 Briefly, for scoring of NFATc3-positive nuclei in vessels, 
multiple fields for each skin section were analyzed under blinded conditions. A cell was considered 
positive if co-localization was observed in the nucleus, whereas a cell was considered negative if no 
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co-localization was visualized. A minimum of 100 cells per animal were inspected. For visualization 
of co-localized image regions or double tagged regions (red: NFATc3 tagged with Cy5 and green: 
nuclear regions tagged with SYTOX Green), the crosshair function of the LSM program was used. 
This tool leads to the distribution of all image pixels over 4 quadrants in a scattergram according to 
their intensity levels, with the background pixels sorted into the bottom left quadrant, the single-tagged 
pixels (either red or green) into the upper left and bottom right quadrants, and the pixels having an 
intensity above the background in both channels (i.e., co-localized pixels) represented by the upper 
right quadrant. The image pixels corresponding to the upper right quadrant are then color-coded white 
in the original image to allow fast identification of co-localized areas. 

Skin organ culture and enzymatic dissociation of dermis and epidermis 

Two days after removing the fur by shaving and with depilatory cream (Veet® Reckitt-Benckiser), 
skin from the flank of WT/NFAT-luc mice was dissected out, cleaned from fat and muscle and cut into 
pieces (~2-3 x 2-3 mm). These were cultured with or without A-285222 (1 µmol/L) in DMEM 
(Dulbecco’s modified minimal essential medium; F0405; Biochrom GmbH, Berlin, Germany) 
supplemented with 5 mmol/L glucose, 200 μg/mL BSA, 50 U/mL penicillin and 50 μg/mL 
streptomycin, at 37°C for various time-points up to 48 hours as indicated in the figure legends, 
according to a protocol that has been shown to preserve human and rodent skin structure and function 
for extended periods of time. 8, 9  After organ culture, the skin was frozen in liquid nitrogen and stored 
at -80°C until enzymatic dissociation of dermis and epidermis according to a previously described 
protocol. 10, 11 Briefly, whole skin was incubated with dispase II (5 μg/mL; Gibco Life Technology, 
Stockholm, Sweden) for 45 minutes at 37°C, after which fractions were manually dissected under a 
light microscope. In order to test for potential effects of the enzymatic dissociation on protein 
quantities or integrity, the method was compared to manual microdissection without prior enzymatic 
incubation and no differences were observed (data not shown). For western blot experiments to assess 
eNOS and p-eNOS (see below), microdissection only was used given that the method proved to be 
more time efficient when processing large number of samples. 

RNA isolation, quantitative RT-PCR and absolute copy number of NFAT isoforms

Total RNA was isolated from skin (whole skin and dissociated dermis and epidermis as explained 
above) and thymus using TRI Reagent (Sigma Aldrich, Stockholm, Sweden) as previously described 
12. cDNA was synthesized with RevertAid First Strand cDNA kit, (Thermo Fisher Scientific, 
Stockholm, Sweden) and amplified using TaqMan gene expression assays for mouse eNOS 
Mm00435217_m1, a custom designed assay for luciferase mRNA (forward primer 
AACTGCCTGCGTCAGATTCTC, reverse primer AGTATCCGGAATGATTTGATTGC, FAM-
labelled probe ATGCCAGGGATCCTA), OPN (Mm00436737_mL) and IL-6 (Mm00446190_ml) on 
a Viia7 instrument (Applied Biosystems, Carlsbad, CA). Target gene expression was normalized to 
HPRT Mm00446968_m1 and cyclophilin B Mm00478295_m1 and relative mRNA quantity was 
calculated using the comparative threshold method (ΔΔCt). All reactions were performed in triplicates.

For the absolute quantification of NFAT isoform expression, thymus cDNA was amplified using 
TaqMan gene expression assays for NFATc1 Mm00479445_m1; NFATc2 Mm01240679_m1; 
NFATc3 Mm01249200_m1; NFATc4 Mm00452375_m1 and β-actin Mm00607939_s1. PCR 
fragments were isolated using NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, 
Germany) and concentrations were determined spectrophotometrically (NanoDrop ND-1000; 
NanoDrop Technologies, Wilmington, DE). The number of copies per µl for each NFAT isoform and 
for β-actin was calculated using the formula [X * 6.022x1023 molecules/mole] / [N * 660 g/mole] 
where X is the concentration of isolated PCR fragments in g/µl and N is the length of the PCR product 
in base pairs. 13 Ten-fold serial dilutions from 109 to 10 copies per µl were prepared and amplified in 
triplicates to generate absolute standard curves for each isoform, from where copy numbers for dermis 
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and epidermis samples, expressed per µg of total RNA input, were determined by reading off their 
threshold cycle (Ct) values after amplification in triplicates. 

Western Blot

Whole skin, dermis and epidermis were homogenized using a glass tissue grinder (Wheaton, Fischer 
Scientific, Sweden) and proteins were extracted using TRI Reagent (Sigma Aldrich, Stockholm, 
Sweden) according to the manufacturer’s instructions. Protein concentration was determined using 
EZQ protein quantification kit (Molecular Probes, Invitrogen, Paisley, UK) and an equal amount of 
protein was loaded in 4-15% Mini Protean TGX Stain-free gels (Bio-Rad Laboratories, Sundbyberg, 
Sweden) and transferred to 0.2 µm PVDF membranes using Trans-Blot turbo (Bio-Rad Laboratories, 
Sundbyberg, Sweden). Membranes were probed overnight at 4°C with primary antibodies against 
CD31 (sc-1506, 1 μg/mL, Santa Cruz Biotechnology, Santa Cruz, CA) and α-tubulin (A01410, 0.1 
μg/mL, GenScript Corporation, Piscataway, NJ) with horseradish peroxidase-conjugated secondary 
antibodies (1:10,000; Cell Signal Technology, Danvers, MA). Labeling was detected by 
chemiluminescence (Supersignal West Dura, Thermo Scientific, MA). 

For quantification of eNOS and p-eNOS, dermis was processed using a OMNI TH tissue homogenizer 
(OMNI International, Kennesaw GA, US) and proteins were extracted using TRI Reagent as described 
above. Proteins were separated on 4-15% TGX Stain-free gels and transferred to 0.45 m low-
fluorescence PVDF membranes. Membranes were then imaged for total protein quantification and 
probed overnight at 4°C with primary antibodies against eNOS (sc-376751, 0.4 μg/mL Santa Cruz 
Biotechnology, Santa Cruz, CA) or p-eNOS (Ser1177, sc-81510, 0.1 μg/mL Santa Cruz 
Biotechnology, Santa Cruz, CA). Data quantification was performed using Image Lab Software (Life 
Science Research, Bio-Rad Laboratories, Sundbyberg, Sweden). Signal intensity was normalized to 
total protein measured in the membrane after transfer. For each animal, dermis from 3-4 pieces of skin, 
each of~2-3 x 2-3 mm, were pooled to generate a data point.

Plasma cytokines, endothelial activation markers and total NO 

Plasma levels of cytokines [interleukin (IL)-1, IL-6, IL-10 and osteopontin (OPN)] and endothelial 
activation markers [soluble intercellular adhesion molecule 1 (sICAM), E-selectin, endothelin-1 (Et-
1)] were measured in blood samples taken from the tail vein before and after A-285222 treatment (Pre, 
Post-1 and Post-2) Plasma cytokine levels were measured using the Bio-PlexTM multiplex ELISA 
system (Bio-Rad Laboratories, Hertfordshire, UK) and sICAM, E-selectin, Et-1and OPN were 
measured using Quantikine Colorimetric sandwich ELISA assays (R&D Systems, Bio-Techne Ltd, 
Abingdon, UK). Total NO related species (nitrite, nitrate, nitrosothiols) were measured 4 weeks after 
treatment with A-285222 (Post-2) using a gas phase chemiluminescence reaction of NO with ozone 
using Sievers nitric oxide analyzer (NOA) model 280i (Analytix, Bodon, UK). 

Blood pressure

Blood pressure was assessed in conscious mice four weeks after treatment with A-285222 (Post-2) 
using a computerized tail-cuff non-invasive blood pressure system (CODA; Kent Scientific, 
Connecticut, USA). Before measurements were initiated, mice were adapted to the apparatus for at 
least 5 days.

Urinary albumin measurements 

Urine was collected from the bladder at termination. Urinary albumin excretion was measured using 
an indirect competitive ELISA (Albuwell M, Exocell, Philadelphia, PA) and urinary creatinine 
concentration was measured using a picric acid assay (Creatinine Companion; Exocell); all according 
to the manufacturers’ instructions.
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Chemicals

A-285222 was kindly provided by Abbott Laboratories (Abbott Park, IL). All other chemicals were 
from Sigma Aldrich unless otherwise specified. 

Statistics

Results are expressed as means ± SEM unless otherwise specified. Statistical significance was 
determined using Student’s t-test and one or two-way ANOVA followed by Dunnett’s multiple 
comparisons or Bonferroni post hoc tests. For survival analysis Kaplan-Meier curves were generated 
from data compiled throughout the study and Mantel-Cox log-rank test performed to compare survival 
between groups. Statistical analyses were performed using SPSS version 14.1 or GraphPad software 
(Prism 6.0 and 7.0).
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