49 research outputs found

    Threading Granules in Freiburg : 2nd International Symposium on "One Mitochondrion, Many Diseases – Biological and Molecular Perspectives", a FRIAS Junior Researcher Conference, Freiburg im Breisgau, Germany, March 9th/10th, 2016

    Get PDF
    Altered mitochondrial activities play an important role in many different human disorders, including cancer and neurodegeneration. At the Freiburg Institute of Advanced Studies (FRIAS) Junior Researcher Conference “One Mitochondrion, Many Diseases – Biological and Molecular Perspectives” (University of Freiburg, Freiburg, Germany), junior and experienced researches discussed common and distinct mechanisms of mitochondrial contributions to various human disorders

    Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions

    Get PDF
    The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane

    Central role of mic10 in the mitochondrial contact site and cristae organizing system

    Get PDF
    The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis and function of Mic10 are unknown. We report that targeting of Mic10 to the mitochondrial inner membrane requires a positively charged internal loop, but no cleavable presequence. Both transmembrane segments of Mic10 carry a characteristic four-glycine motif, which has been found in the ring-forming rotor subunit of F1Fo-ATP synthases. Overexpression of Mic10 profoundly alters the architecture of the inner membrane independently of other MICOS components. The four-glycine motifs are dispensable for interaction of Mic10 with other MICOS subunits but are crucial for the formation of large Mic10 oligomers. Our studies identify a unique role of Mic10 oligomers in promoting the formation of inner membrane crista junctions

    Iwasawa theory and p-adic L-functions over Zp2-extensions

    Get PDF
    We construct a two-variable analogue of Perrin-Riou’s p-adic regulator map for the Iwasawa cohomology of a crystalline representation of the absolute Galois group of Q p , over a Galois extension whose Galois group is an abelian p-adic Lie group of dimension 2. We use this regulator map to study p-adic representations of global Galois groups over certain abelian extensions of number fields whose localisation at the primes above p is an extension of the above type. In the example of the restriction to an imaginary quadratic field of the representation attached to a modular form, we formulate a conjecture on the existence of a “zeta element”, whose image under the regulator map is a p-adic L-function. We show that this conjecture implies the known properties of the 2-variable p-adic L-functions constructed by Perrin-Riou and Kim

    Critical slope p-adic L-functions of CM modular forms

    Get PDF
    For ordinary modular forms, there are two constructions of a p-adic L-function attached to the non-unit root of the Hecke polynomial, which are conjectured but not known to coincide. We prove this conjecture for modular forms of CM type, by calculating the the critical-slope L-function arising from Kato's Euler system and comparing this with results of Bellaiche on the critical-slope L-function defined using overconvergent modular symbols.Comment: 14 page

    Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    Get PDF
    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse

    Brevenal Inhibits Pacific Ciguatoxin-1B-Induced Neurosecretion from Bovine Chromaffin Cells

    Get PDF
    Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and β-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera

    Estimating the growth in Mordell-Weil ranks and Shafarevich-Tate groups over Lie extensions

    Get PDF
    Let E/Q be an elliptic curve, p > 3 a good ordinary prime for E, and K∞ a p-adic Lie extension of a number field k. Under some standard hypotheses, we study the asymptotic growth in both the Mordell–Weil rank and Shafarevich–Tate group for E over a tower of extensions K ₙ/ₖ inside K∞; we obtain lower bounds on the former, and upper bounds on the latter’s size

    Uniform nomenclature for the mitochondrial contact site and cristae organizing system

    Get PDF
    The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60
    corecore