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IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER

Z2
p-EXTENSIONS

DAVID LOEFFLER AND SARAH LIVIA ZERBES

Abstract. We construct a two-variable analogue of Perrin-Riou’s p-adic reg-

ulator map for the Iwasawa cohomology of a crystalline representation of the
absolute Galois group of Qp, over a Galois extension whose Galois group is an

abelian p-adic Lie group of dimension 2.
We use this regulator map to study p-adic representations of global Galois

groups over certain abelian extensions of number fields whose localisation at

the primes above p is an extension of the above type. In the example of the
restriction to an imaginary quadratic field of the representation attached to a

modular form, we formulate a conjecture on the existence of a “zeta element”,

whose image under the regulator map is a p-adic L-function. We show that this
conjecture implies the known properties of the 2-variable p-adic L-functions

constructed by Perrin-Riou and Kim.

1. Introduction

In the first part of this paper (Sections 3 and 4), we develop a “two-variable”
analogue of Perrin-Riou’s theory of p-adic regulator maps for crystalline represen-
tations of p-adic Galois groups.

Let us briefly recall Perrin-Riou’s cyclotomic theory as developed in [PR95]. Let
p be an odd prime, F a finite unramified extension of Qp, and V a continuous p-
adic representation of the absolute Galois group GF of F , which is crystalline with
Hodge–Tate weights ≥ 0 and with no quotient isomorphic to the trivial represen-
tation. Then there is a “regulator” or “big logarithm” map

LΓ
F,V : H1

Iw(F (µp∞), V ) - HQp(Γ)⊗Qp Dcris(V )

which interpolates the values of the Bloch–Kato dual exponential and logarithm
maps for the twists V (j), j ∈ Z, over each finite subextension F (µpn). Here HQp(Γ)
is the algebra of Qp-valued distributions on the group Γ = Gal(F (µp∞)/F ) ∼= Z×p ,

and the Iwasawa cohomologyH1
Iw(F (µp∞), V ) is defined as Qp⊗Zp lim←−nH

1(F (µpn), T )

where T is any GF -stable Zp-lattice in V . This map plays a crucial role in cyclo-
tomic Iwasawa theory for p-adic representations of the Galois groups of number
fields, as a bridge between cohomological objects and p-adic L-functions.

It is natural to ask whether or not the construction of the maps LΓ
F,V may be

extended to consider twists of V by more general characters of GF . In this paper,
we give a complete answer to this question for characters factoring through an
extension K∞/F which is abelian over Qp (thus for all characters if F = Qp).
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2 DAVID LOEFFLER AND SARAH LIVIA ZERBES

Any such character factors through the Galois group G of an extension of the
form K∞ = F∞(µp∞), where F∞ is an unramified extension of F which is a finite

extension of the unique unramified Zp-extension of F . Denote by F̂∞ the p-adic

completion of F∞, and HF̂∞(G) the algebra of F̂∞-valued distributions on G.

Theorem 1.1. For any crystalline representation V of GF with non-negative Hodge–
Tate weights, there exists a regulator map

LGV : H1
Iw(K∞, V ) - HF̂∞(G)⊗Qp Dcris(V )

interpolating the maps LΓ
K,V for all unramified extensions K/F contained in F∞.

See Theorem 4.7 for a precise statement of the result. Unlike the cyclotomic
case, this result holds whether or not V has trivial quotients.

In Sections 5 and 5.2, we use the 2-variable p-adic regulator to study global
Galois representations. Let K be a finite extension of Q, p a prime of K above
p which is unramified, and K∞ be a p-adic Lie extension of K such that for any
prime P of K∞ above p, the local extension K∞,P/Kp is of the type considered
above. Let G = Gal(K∞/K). In Section 5, we extend the regulator map to a map

LGp,V : Z1
Iw,p(K∞, V ) - HF̂∞(G)⊗Qp Dcris(Kp, V )

where Z1
Iw,p(K∞, V ) is the direct sum of the Iwasawa cohomology groups at each

of the primes q | p, and Dcris(Kp, V ) is the Fontaine Dcris functor for V regarded
as a representation of a decomposition group at p. There is a natural localisation
map

H1
Iw,S(K∞, V )→

⊕
p|p

Z1
Iw,p(K∞, V )

where H1
Iw,S(K∞, V ) denotes the inverse limit of global cohomology groups unram-

ified outside a fixed set of primes S. As in the case of Perrin-Riou’s cyclotomic
regulator map, our map LGV allows elements of Iwasawa cohomology (or, more gen-
erally, of its exterior powers) to be interpreted as Dcris-valued distributions on G
(after extending scalars). Assuming a plausible conjecture analogous to Leopoldt’s
conjecture, we use the map LGV to define a certain submodule Iarith(V ) of the dis-
tributions on G with values in an exterior power of Dcris. Following Perrin-Riou
[PR95], we call Iarith(V ) the module of 2-variable L-functions. We conjecture that
there exist special elements of the top exterior power of H1

Iw,S(K∞, V ) (“zeta el-

ements”) whose images under the regulator map are p-adic L-functions, and that
these should generate Iarith(V ) as a module over the Iwasawa algebra ΛQp(G).

In Section 6, we investigate in detail two instances of this conjecture that occur
when the field K is imaginary quadratic. We first show that for the representation
Zp(1), our regulator map coincides with the map constructed in [Yag82]. In this
paper, Yager shows that his map sends the Euler system of elliptic units to Katz’s
p-adic L-function. As the second example, we study the representation attached
to a weight 2 cusp form for GL2 /K: here we predict the existence of multiple
distributions, depending on a choice of Frobenius eigenvalue at each prime above p
(Conjecture 6.16), and we show that our conjectures imply the known properties of
the 2-variable p-adic L-functions constructed by Perrin-Riou [PR88] (for f ordinary)
and by B.D. Kim [Kim11] (for f non-ordinary). However, our conjectures also
predict the existence of some new p-adic L-functions. (The existence of these p-
adic L-functions is verified in a forthcoming paper [Loe13] of the first author.)
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In our paper [LLZ13] (joint with Antonio Lei), we use the 2-variable p-adic
regulator to study the critical slope p-adic L-functions of an ordinary CM modular
form. In this case, there are two candidates for the p-adic L-function, one arising
from Kato’s Euler system and a second from p-adic modular symbols. The latter
has been studied by Belläıche [Bel11], who has proved a formula (Theorem 2 of
op.cit.) relating it to the Katz L-function for the CM field. We use the methods of
the present paper to prove a corresponding formula for the L-function arising from
Kato’s construction, implying that the two p-adic L-functions in fact coincide.

2. Setup and notation

2.1. Fields and their extensions. Let p be an odd prime, and denote by µp∞

the set of p-power roots of unity. Let K be a finite extension of either Q or Qp.
Define the Galois groups GK = Gal(K/K) and HK = Gal(K/K(µp∞)). A p-adic
Lie extension of K is a Galois extension K∞/K such that Gal(K∞/K) is a compact
p-adic Lie group of finite dimension.

We write Γ for the Galois group Gal(Q(µp∞)/Q) ∼= Gal(Qp(µp∞)/Qp), which we
identify with Z×p via the cyclotomic character χ. Then Γ ∼= ∆ × Γ1, where ∆ is
cyclic of order p − 1 and Γ1 = Gal(Qp(µp∞)/Qp(µp)) ∼= Zp, so in particular Q∞
(resp. Qp,∞) is a p-adic Lie extension of Q (resp. Qp) of dimension 1.

2.2. Iwasawa algebras and power series. Let G be a compact p-adic Lie group,
and L a complete discretely valued extension of Qp with ring of integers OL. We
let ΛOL(G) be the Iwasawa algebra lim←−U OL[G/U ], where the limit is taken over

open subgroups U ⊆ G. We shall always equip this with the inverse limit topology
(sometimes called the “weak topology”) for which it is a Noetherian topological
O-algebra (cf. [Eme04, Theorem 6.2.8]). If L/Qp is a finite extension then ΛOL(G)
is compact (but not otherwise).

We let ΛL(G) = L ⊗OL ΛO(G), which is also Noetherian; it is isomorphic to
the continuous dual of the space C(G,L) of continuous L-valued functions on G.
(See [ST02, Corollary 2.2] for a proof of the last statement when L/Qp is a finite
extension; this extends immediately to general discretely-valued L, since ΛL(G) =
L ⊗̂Qp ΛQp(G) and similarly for C(G,L).)

Let HL(G) be the space of L-valued locally analytic distributions on G (the con-
tinuous dual of the space C la(G,L) of L-valued locally analytic functions on G).
There is an injective algebra homomorphism ΛL(G) ↪→ HL(G) (see [Eme04, Propo-
sition 2.2.7]), dual to the inclusion of C la(G,L) as a dense subspace of C(G,L). We
endow HL(G) with its natural topology as an inverse limit of Banach spaces, with
respect to which the map ΛL(G) ↪→ HL(G) is continuous.

We shall mostly be concerned with the case when G is abelian, in which case G
has the form H×Zdp for H a finite abelian group. In this case ΛOL(G) is isomorphic
to the power series ring OL[H][[X1, . . . , Xd]], where Xi = γi − 1 for generators
γ1, . . . , γd of the Zdp factor (see [Nek06, §8.4.1]). The weak topology on ΛOL(G)
is the I-adic topology, where I is the ideal (p,X1, . . . , Xd). Meanwhile, HL(G)
identifies with the algebra of L[H]-valued power series in X1, . . . , Xd converging on
the rigid-analytic unit ball |Xi| < 1, with the topology given by uniform convergence
on the closed balls |Xi| ≤ r for all r < 1.
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In particular, for the group Γ ∼= Z∗p as in Section 2.1, we may identify HL(Γ)
with the space of formal power series

{f ∈ L[∆][[X]] : f converges everywhere on the open unit p-adic disc},

where X corresponds to γ− 1 for γ a topological generator of Γ1; and ΛL(Γ) corre-
sponds to the subring of HL(Γ) consisting of power series with bounded coefficients.
Similarly, we define HL(Γ1) as the subring of HL(Γ) defined by power series over
Qp, rather than Qp[∆].

For each i ∈ Z, we define an element `i ∈ HQp(Γ1) by

`i =
log γ

logχ(γ)
− i

for any non-identity element γ ∈ Γ1 (cf. [Ber03, §II.1]); note that this differs by a
sign from the element denoted by the same symbol in [PR94].

2.3. Fontaine rings. We review the definitions of some of Fontaine’s rings that
we use in this paper. Details can be found in [Ber04] or [LLZ11]. Let K be a finite
extension of Qp; the rings we shall require are those denoted by AK , A+

K , BK , B+
K ,

and B+
rig,K .

These rings have intrinsic definitions independent of any choices and valid for
any K; but we shall be interested in the case when K is unramified over Qp. In
this case, they have concrete (but slightly noncanonical) descriptions as follows. A
choice of compatible system (ζn)n≥0 of p-power roots of unity defines an element
π ∈ A+

K , and allows us to identify A+
K with the formal power series ring OK [[π]].

The ring AK is simply ̂A+
K [1/π]. The ring B+

K is defined as A+
K [1/p], and similarly

BK = AK [1/p]. Finally, we let B+
rig,K be the ring of power series f ∈ K[[π]] which

converge on the open unit disc |π| < 1.
All these rings are endowed with an OK-linear action of Γ by γ(π) = (π+1)χ(γ)−

1, and with a Frobenius ϕ which acts as the usual arithmetic Frobenius on OK and
on π by ϕ(π) = (π + 1)p − 1. There is also a left inverse ψ of ϕ on all of the above
rings, satisfying

ϕ ◦ ψ(f(π)) =
1

p

∑
ζp=1

f(ζ(1 + π)− 1).

Write t = log(1 + π) ∈ B+
rig,Qp , and q = ϕ(π)/π ∈ A+

Qp . A formal power series

calculation shows that g(t) = χ(g)t for g ∈ Γ, and ϕ(t) = pt.
The action of Γ on A+

K gives an isomorphism of ΛOK (Γ) with the submodule

(A+
K)ψ=0, the so-called “Mellin transform”

M : ΛOK (Γ)→ (A+
K)ψ=0

f(γ − 1) 7→ f(γ − 1) · (π + 1).

This extends to bijections ΛK(Γ) ∼= (B+
K)ψ=0 and HK(Γ) ∼= (B+

rig,K)ψ=0. (See

[PR90, §1.3], [PR94, Proposition 1.2.7], or [LLZ11, §1.C.2] for more details.)

2.4. Crystalline and de Rham representations. Let K be a finite extension
of Qp, and V a continuous representation of GK on a Qp-vector space of dimension
d. Recall that DdR(V ) denotes the space (V ⊗Qp BdR)GK , where BdR is Fontaine’s
ring of periods. This space DdR(V ) is a filtered K-vector space of dimension ≤ d,
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and we say V is de Rham if equality holds. If j ∈ Z, Filj DdR(V ) denotes the j-th
step in the Hodge filtration of DdR(V ).

If L is a finite extension of K, we shall sometimes write DdR(L, V ) for DdR(V |GL),
which can be canonically identified with L⊗K DdR(V ).

We also consider the crystalline period ring Bcris ⊂ BdR, and define similarly
Dcris(V ) = (V ⊗Qp Bcris)

GK . This is a K0-vector space of dimension ≤ d, where
K0 is the maximal unramified subspace of K, endowed with a semilinear Frobe-
nius (acting as the usual arithmetic Frobenius on K0). We say V is crystalline
if dimK0

Dcris(V ) = d, in which case V is automatically de Rham, and there is a
canonical isomorphism of K-vector spaces DdR(V ) ∼= K ⊗K0

Dcris(V ). As above,
we will write Dcris(L, V ) for Dcris(V |GL), where L is a finite extension of K; if V is
crystalline over K this is isomorphic to L0 ⊗K0

Dcris(V ).
For an integer j, V (j) denotes the j-th Tate twist of V , i.e. V (j) = V ⊗Zp

(lim←−n µpn)⊗j . If ζ = (ζn)n≥0 is a choice of a compatible system of p-power roots of

unity, this defines a basis vector ej of Qp(j) and an element t−j ∈ BdR; these each
depend on ζ, but the element t−jej ∈ DdR(Qp(j)) does not, and tensoring with
t−jej thus gives a canonical isomorphism DdR(Qp(j)) ∼= Qp for each j.

We write

expK,V :
DdR(V )

Fil0 DdR(V ) + Dcris(V )ϕ=1
⊂ - H1(K,V )

for the Bloch-Kato exponential of V over K (c.f. [BK90]), which is the boundary
map in the cohomology of the “fundamental exact sequence”

0 - V - V ⊗Qp B
ϕ=1
cris

- V ⊗Qp

(
BdR

B+
dR

)
- 0.

The image of this map is denoted H1
e (K,V ), and we denote its inverse by

logK,V : H1
e (K,V )

∼=- DdR(V )

Fil0 DdR(V ) + Dcris(V )ϕ=1
.

We also denote by

exp∗K,V : H1(K,V ∗(1))→ Fil0 DdR(V ∗(1))

the dual exponential map, which is the dual of expK,V with respect to the Tate
duality pairing (c.f. [Kat93, §II.1.4]); it satisfies the identity

〈expK,V (a), b〉K = 〈a, exp∗K,V (b)〉dR

for all a ∈ DdR(V ) and b ∈ H1(K,V ), where 〈−,−〉Tate is the Tate pairing and
〈−,−〉dR,K is the pairing

DdR(V )⊗ DdR(V ∗(1)) - DdR(Qp(1)) ∼= K
trace- Qp.

Finally, if L is a number field, V is a p-adic representation of GL and p is a prime
of L above p, we write DdR(Lp, V ) and Dcris(Lp, V ) for the Fontaine spaces attached

to V regarded as a representation of Gal(LP/Lp) for any choice of prime P | p of

L; up to a canonical isomorphism these spaces are independent of the choice of P.
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2.5. (ϕ,Γ)-modules and Wach modules. Let K be a finite extension of Qp, and
let T be a Zp-representation of GK (that is, a finite-rank free module over Zp with
a continuous action of GK). Denote the (ϕ,Γ)-module of T by DK(T ). This is a
module over Fontaine’s ring AK .

If K is unramified over Qp and T is a Zp-representation of GK which is crystalline
(i.e. such that V = T [1/p] is crystalline), Wach and Berger have shown that there
exists a canonical A+

K-submodule NK(T ) ⊂ DK(T ), the Wach module (see [Wac96],
[Ber04]); this is the unique submodule such that

• NK(T ) is free of rank d over A+
K ,

• the action of Γ preserves NK(T ) and is trivial on NK(T )/πNK(T ),
• there exists b ∈ Z such that ϕ(πbNK(T )) ⊆ πbNK(T ) and the quotient
πbNK(T )/ϕ∗(πbNK(T )) is killed by a power of q = ϕ(π)/π.

Here ϕ∗(πbNK(T )) denotes the A+
K-submodule of DK(T ) generated by ϕ(πbNK(T )).

The following lemma is immediate from the definition of the functors DK(−)
and NK(−):

Lemma 2.1. Assume that T is a Zp-representation of GK , and L a finite extension
of K, with L and K both unramified over Qp. There is a canonical isomorphism of
(ϕ,Γ)-modules

DL(T ) ∼= DK(T )⊗OK OL,
where ϕ acts on OL via the arithmetic Frobenius σp ∈ Gal(L/Qp). If V = T [1/p]
is crystalline, then this isomorphism restricts to an isomorphism

NL(T ) ∼= NK(T )⊗OK OL.

2.6. Iwasawa cohomology and the Perrin-Riou pairing. Let K be a finite
extension of Q` for some prime ` (which may or may not equal p) and let T be a
Zp-representation of GK . Let K∞ be a p-adic Lie extension of K.

Definition 2.2. We define

Hi
Iw(K∞, T ) := lim←−H

i(L, T ),

where L varies over the finite extensions of K contained in K∞, and the inverse
limit is taken with respect to the corestriction maps.

If V = Qp ⊗Zp T , we write

Hi
Iw(K∞, V ) := Qp ⊗Zp H

i
Iw(K∞, T )

(which is independent of the choice of Zp-lattice T ⊂ V ).

It is clear that the groups Hi
Iw(K∞, T ) are ΛZp(G)-modules; we show in §A below

that they are finitely generated.
There is a natural extension of the Tate pairing to this setting. We may clearly

choose an increasing sequence {Kn} of finite extensions of K with
⋃
nKn = K∞

and each Kn Galois over K. If 〈−,−〉Kn denotes the Tate pairing H1(Kn, T ) ×
H1(Kn, T

∗(1))→ Zp, and x = (xn) and y = (yn) are sequences in H1
Iw(K∞, T ) and

H1
Iw(K∞, T

∗(1)), then the sequence whose n-th term is

(1)
∑

σ∈Gal(Kn/K)

〈xn, σ(yn)〉Kn [σ] ∈ Zp[Gal(Kn/K)]

is compatible under the natural projection maps, and hence defines an element of
ΛZp(G).
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Definition 2.3. We define the Perrin-Riou pairing to be the pairing

〈−,−〉K∞,T : H1
Iw(K∞, T )×H1

Iw(K∞, T
∗(1))→ ΛZp(G)

defined by the inverse limit of the pairings (1).

It is easy to see that for α, β ∈ G we have

〈αx, βy〉K∞,T = α · 〈x, y〉K∞,T · β−1.

(The above construction is valid for any p-adic Lie extension K∞/K, but in this
paper we shall only use the above construction when G is abelian, in which case
the distinction between left and right multiplication is not significant.)

Lemma 2.4. If η is any continuous Zp-valued character of G, and we identify
H1

Iw(K∞, T (η)) with H1
Iw(K∞, T )(η), then we have

〈x, y〉K∞,T (η) = Twη−1〈x, y〉K∞,T ,

where Twη is the map ΛZp(G)→ ΛZp(G) mapping g ∈ G to η(g)g.

Proof. This is immediate if η has finite order, and follows for all η by reduction
modulo powers of p; cf. [PR94, §3.6.1]. �

If V = T [1/p], we obtain by extending scalars a pairing

H1
Iw(K∞, V )×H1

Iw(K∞, V
∗(1))→ ΛQp(G)

which we denote by 〈−,−〉K∞,V . This pairing is independent of the choice of lattice
T ⊆ V .

It is clear that if T is an OE-module for some finite extension E/Qp, then we
may similarly define an OE-linear analogue of the Perrin-Riou pairing, and in this
case Lemma 2.4 applies to any OE-valued character η.

2.7. The Fontaine isomorphism. In the case when K∞ = K(µp∞), we can de-
scribeH1

Iw(K∞, T ) in terms of the (ϕ,Γ)-module DK(T ). Let ΓK = Gal(K(µp∞)/K),
which we identify with a subgroup of Γ. The following result is originally due to
Fontaine (unpublished); for a reference see [CC99, Section II].

Theorem 2.5. We have a canonical isomorphism of ΛZp(ΓK)-modules

(2) h1
Iw,T : DK(T )ψ=1

∼=- H1
Iw(K(µp∞), T ).

If T is a representation of GQp , then the action of Γ extends to an action of

Gal(K(µp∞)/Qp) on both sides of equation (2), and the map h1
Iw,T commutes with

the action of this larger group. We shall apply this below in the case when K is
an unramified extension of Qp, so ΓK = Γ and Gal(K(µp∞)/Qp) = Γ× UF , where
UF = Gal(F/Qp).

Now let K be a finite unramified extension of Qp, and assume that V is a
crystalline representation of GK whose Hodge-Tate weights1 lie in the interval [a, b].
The following result is due to Berger [Ber03, Theorem A.2].

Theorem 2.6. We have DK(T )ψ=1 ⊂ πa−1NK(T ). Moreover, if V has no quotient
isomorphic to Qp(a), then DK(T )ψ=1 ⊂ πaNK(T ).

1In this paper we adopt the convention that the Hodge–Tate weight of the cyclotomic character
is +1.
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In particular, if V has non-negative Hodge–Tate weights and no quotient iso-
morphic to Qp, we have NK(T )ψ=1 = DK(T )ψ=1. Then (2) becomes

(3) h1
Iw,T : NK(T )ψ=1

∼=- H1
Iw(K(µp∞), T ).

2.8. Gauss sums, L- and epsilon-factors. In many of our formulae, epsilon-
factors attached to characters of the Galois group (or rather the Weil group) of Qp
will make an appearance, so we shall fix normalizations for these. We follow the
conventions of [Del73].

Let E be an algebraically closed field of characteristic 0, and let ζ = (ζn)n≥0 be
a choice of a compatible system of p-power roots of unity in E. The data of such a
choice is equivalent to the data of an additive character λ : Qp → E× with kernel
Zp, defined by λ(1/pn) = ζn.

We first define the Gauss sum of a finitely ramified character ω of the Weil group
WQp , which will in fact depend only on the restriction of ω to the inertia subgroup

Gal(Qp/Qnr
p ). If ω has conductor n, then we define

τ(ω, ζ) =
∑

σ∈Gal(Qnr
p (µpn )/Qnr

p )

ω(σ)−1ζσpn .

Now let us recall the definition of epsilon-factors given in [Del73] for locally
constant characters of Q×p . These depend on the character ω, the auxilliary additive
character λ, and a choice of Haar measure dx; we choose dx so that Zp has volume
1. The definition is given as

ε(ω, λ,dx) =

{
1 if ω is unramified,∫
Q×p ω(x−1)λ(x) dx if ω is ramified.

As shown in op.cit., if the conductor of ω is n, then it suffices to take the integral
over p−nZ×p . For consistency with [CFK+05], we will rather work with the additive
character λ(−x) rather than λ(x); then we find that

ε(ω, λ(−x),dx) = ω(p)n
∑

x∈(Z/pnZ)×

ω(x)−1ζ−xn .

We now recall that local reciprocity map recQp of class field theory identifies

W ab
Qp with Q×p . Following [Del73], we normalize recQp such that geometric Frobe-

nius elements of W ab
Qp are sent to uniformizers. Then the restriction of recQp to

Gal(Qab
p /Qnr

p ) gives an isomorphism

Gal(Qab
p /Qnr

p ) - Z×p .

Our choice of normalization for the local reciprocity map implies that this coin-
cides with the cyclotomic character. On the other hand, p ∈ Q×p corresponds to

σ̃−1
p , where σ̃p is the unique element of Gal(Qab

p /Qp) which acts as the arithmetic
Frobenius σp on Qnr

p and acts trivially on all p-power roots of unity. Hence

ε(ω−1, λ(−x),dx) = ω(σ̃p)
n
∑

σ∈Γ/Γn

ω(σ)ζ−σn =
pnω(σ̃p)

n

τ(ω, ζ)
.

This quantity ε(ω−1, λ(−x),dx), which we shall abbreviate to ε(ω−1), will appear
in our formulae for the two-variable regulator.
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We shall also need to consider the case when E is a p-adic field and ω is a
continuous character of Gab

Qp which is Hodge–Tate, but not necessarily finitely ram-

ified. Any such character is potentially crystalline, and a well-known construction
of Fontaine [Fon94b] allows us to regard Dpst(ω) as a one-dimensional representa-
tion of the Weil group; concretely, if ω = χjω′ where ω′ is finitely ramified, then
σ ∈WQp acts on Dpst(ω) as pjn(σ)ω′(σ), where n(σ) is the power of the arithmetic
Frobenius by which σ acts on Qnr

p . We define ε(ω) = ε(ω, λ(−x),dx) to be the
epsilon-factor attached to Dpst(ω), so

ε(ω−1) =
pn(1+j)ω(σ̃p)

n

τ(ω, ζ)
.

We write P (ω,X) for the L-factor of the Weil–Deligne representation Dpst(ω).
This is a polynomial P (ω,X) in X, which is identically 1 if ω is not crystalline;
otherwise, it is given by P (ω,X) = 1−uX, where u is the scalar by which crystalline
Frobenius acts on Dcris(ω), so u = p−jω′(σp)

−1 if ω = χjω′ with ω′ unramified.

3. Local theory: Yager modules and Wach modules

3.1. Some cohomological preliminaries. Let F be a finite unramified extension
of Qp, and let F∞/F be an unramified p-adic Lie extension with Galois group U .
(Thus U is either a finite cyclic group, or the product of such a group with Zp.)
Let ÔF∞ be the completion of the ring of integers of F∞.

Lemma 3.1. Let M be a free Zp-module of rank d <∞, with a continuous action
of U . Then the module

H0(U, ÔF∞ ⊗Zp M)

is free of rank d over OF , and

H1(U, ÔF∞ ⊗M) = 0.

Proof. This is a form of Hilbert’s Theorem 90; for the form of the statement given
here see e.g. [Fon90, Proposition 1.2.4]. �

We will need the following result on trace maps for unramified extensions.

Proposition 3.2. The module

lim←−
K

OK ,

where K varies over finite extensions of F contained in F∞ and the inverse limit
is with respect to the trace maps, is free of rank 1 over ΛOF (U).

Proof. We first note that if L/K is any finite unramified extension of local fields,
then the trace map OL → OK is surjective, since the residue extension kL/kK is
separable and hence its trace map is surjective. Moreover, OL is free of rank 1 over
OK [Gal(L/K)]; elements of OL that generate it as a OF [Gal(L/K)]-module are
called integral normal basis generators of L/K. We must show that there exists a
trace-compatible sequence x = (xK) ∈ lim←−K OK such that xK is an integral normal

basis generator of K/F for all K.
Let F0 be the largest subfield of F∞ such that [F0 : F ] is prime to p; this is a

finite extension of F , by our hypotheses on F∞. Choose a normal basis generator
x0 of F0/F .
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We claim that if K is any finite extension of F0 contained in F∞, and x is any
element of OK with TrK/F0

(x) = x0, then x is an integral normal basis generator
of K/F .

To prove this, consider the group ring R = OF [Gal(K/F )]. As noted above, OK
is a freeR-module of rank 1. Let I be the ideal ofR given by the kernel of the natural
mapOF [Gal(K/F )]→ OF [Gal(F0/F )]. Then I is contained in the Jacobson radical
J of R (indeed J is generated by I and p). So, by Nakayama’s lemma, an element
x ∈ OK generates OK as an R-module if and only if its image in OK/IOK generates
this quotient; but the trace map TrK/F0

: OK → OF0
is surjective and factors

through OK/IOK , and OF0 and OK/IOK are free Zp-modules of the same rank,
so TrK/F0

must give an isomorphism OK/IOK → OF0
. This proves the claim.

So it suffices to take any element of lim←−K OK lifting x0. �

Remark 3.3. As noted in [Pic10], one can also deduce the above claim from the
work of Semaev [Sem88, Lemma 4.1] on normal bases of extensions of finite fields,
which does not explicitly use Nakayama’s lemma.

3.2. The Yager module. In this section we develop a variant of the construction
in [Yag82, §2] in order to construct a certain module which, in a sense we shall
make precise below, encodes the periods for the unramified characters of GF .

Definition 3.4. Let K/F be a finite unramified extension. For x ∈ OK , we define

yK/F (x) =
∑

σ∈Gal(K/F )

xσ [σ−1] ∈ OK [Gal(K/F )].

It is clear that yK/F isOF -linear and injective, and we have yK/F (xg) = [g]yK/F (x)
for all g ∈ Gal(K/F ), where [u] is the image of u in the group ring. Moreover, the
image of yK/F is precisely the submodule SK/F of OK [Gal(K/F )] consisting of
elements satisfying yg = [g]y for all g ∈ Gal(K/F ), where yg denotes the action of
Gal(K/F ) on the coefficients OK .

Proposition 3.5. If L ⊃ K ⊃ F are finite unramified extensions and x ∈ OL, the
image of yL/F (x) under the reduction map

OL[Gal(L/F )]→ OL[Gal(K/F )]

induced by the surjection Gal(L/F ) → Gal(K/F ) is equal to yK/F (TrL/K x). In
particular, the reduction has coefficients in OK .

Proof. Clear from the formula defining the maps yK/F and yL/F . �

Now let F∞/F be any unramified p-adic Lie extension with Galois group U , as
in the previous section. Passing to inverse limits with respect to the trace maps,
we deduce that there is an isomorphism of ΛOF (U)-modules

(4) yF∞/F : lim←−
F⊆K⊆F∞

OK
∼=- SF∞/F := lim←−

F⊆K⊆F∞
SK/F .

Proposition 3.6. We have

SF∞/F = {f ∈ ΛÔF∞
(U) : fu = [u]f}

for any topological generator u of U .
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Proof. Let us set X = {f ∈ ΛÔF∞
(U) : fu = [u]f}. Let Fn be a family of finite

extensions of F whose union is F∞, and let Un = Gal(F∞/Fn).

Firstly, since SFn/F ⊆ OFn [U/Un] ⊆ ÔF∞ [U/Un], we clearly have an embedding
SF∞/F ↪→ ΛÔF∞

(U), which must land in X, because of the Galois-equivariance

property of the elements of SFn/F . However, it is clear that for any x ∈ X, the

image xn of x in ÔF∞ [U/Un] has coefficients in OFn (since (ÔF∞)Un = On by
Lemma 3.1) and satisfies (xn)u = [u]xn, thus lies in SFn . So the map SF∞/F ↪→ X
is a bijection. �

We shall always equip SF∞/F with the inverse limit topology (arising from the
p-adic topology of the finitely generated Zp-modules SFn/F ). This topology is
compact and Hausdorff, and coincides with the subspace topology from ΛÔF∞

(U).

Definition 3.7. We refer to SF∞/F as the Yager module, since it is closely related
to the objects appearing in [Yag82, §2].

We now explain the relation between SF∞/F and the periods for characters of U .
Let M be a finite-rank free Zp-module with an action of U , given by a continuous
map ρ : U → AutZp(M). Then ρ induces a ring homomorphism ΛÔF∞

(U) →
ÔF∞ ⊗Zp EndZpM , which we also denote by ρ.

Proposition 3.8. Let ω ∈ SF∞/F . Then ρ(ω) ∈ ÔF∞ ⊗Zp EndZp(M) is a period
for ρ, in the sense that

ρ(ω)u = ρ(u) · ρ(ω).

for all u ∈ U .

Proof. Since ω ∈ SF∞/F , we have ωu = [u]ω for any u ∈ U . However, the map

ΛÔF∞
(U) → ÔF∞ ⊗Zp EndZpM commutes with the action of U on the coefficient

ring ÔF∞ ; so we have

ρ(ω)u = ρ(ωu) = ρ([u] · ω) = ρ(u)ρ(ω).

�

Remark 3.9. After the results in this section had been proven, we discovered that
similar results had been obtained by Pasol in his unpublished PhD thesis [Pas05,
§2.5]. Our module SF∞/F is the same as his module D0. He uses the module D0 to
relate Katz’s 2-variable p-adic L-functions attached to a CM elliptic curve to the
modular symbols construction by Greenberg and Stevens [GS93].

3.3. P-adic representations. Let T be a crystalline Zp-representation of GF . If
K/F is any unramified extension, we have isomorphisms NK(T ) ∼= NF (T ) ⊗OF
OK , so we have trace maps NL(T ) → NK(T ) for L/K any two finite unramified
extensions of F .

Definition 3.10. Let NF∞(T ) = lim←−F⊆K⊂F∞ NK(T ), where the inverse limit is

taken with respect to the trace maps.

By construction, NF∞(T ) has actions of Γ and U , since these act on the modules
NK(T ) compatibly with the trace maps.

Proposition 3.11. We have an isomorphism of topological modules

NF∞(T ) ∼= NF (T ) ⊗̂OF SF∞/F .
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Proof. Clear by construction. �

By construction, NF∞(T ) has OF -linear actions of Γ and of U , which extend to
a continuous action of ΛOF (Γ× U).

Define ϕ∗NF∞(T ) as the A+
F -submodule of NF∞(T )[q−1] generated by ϕ(NF∞(T ));

this is in fact an A+
F ⊗̂OF ΛOF (U)-submodule, since ϕ acts bijectively on ΛOF (U).

If T has non-negative Hodge–Tate weights, then we have an inclusion

NF∞(T ) ↪→ ϕ∗NF∞(T ),

with quotient annihilated by qh, for any h such that the Hodge-Tate weights of T
lie in [0, h]. Note that the map ϕ : NF∞(T )→ ϕ∗NF∞(T ) commutes with the action
of G = U ×Γ. Similarly, the maps ψ on NK(T )[q−1] for each K assemble to a map

ψ : ϕ∗NF∞(T )→ NF∞(T ),

which is a left inverse of ϕ.
The following proposition will be important for constructing the regulator map:

Proposition 3.12. We have

(ϕ∗NF∞(T ))
ψ=0

= (ϕ∗NF (T ))
ψ=0 ⊗̂OF SF∞/F .

Proof. Choose a basis n1, . . . , nd of NF (T ) as an A+
F -module, and a basis Ω of

SF∞/F as a ΛOF (U)-module. Then any vector v ∈ ϕ∗NF∞(T ) can be uniquely
written as

v =

p−1∑
i=0

d∑
j=0

(1 + π)iϕ(xij) · (ϕ(nj)⊗ Ω),

for some xij ∈ A+
F ⊗̂OF ΛOF (U), since {(1 + π)i : 0 ≤ i ≤ p − 1} is a basis of A+

F

over ϕ(A+
F ).

Applying ψ, we have

ψ(v) =

p−1∑
i=0

d∑
j=0

ψ
(
(1 + π)i

)
xij · (nj ⊗ σ−1

p Ω),

where σp is the arithmetic Frobenius element of Gal(F∞/Qp). The element σ−1
p Ω

is also a ΛOF (U)-generator of SF∞/F . Moreover, it is well known that ψ
(
(1 + π)i

)
is 1 if i = 0 and 0 if 1 ≤ i ≤ p − 1. So we have ψ(v) = 0 if and only if v is in the
submodule

p−1⊕
i=1

(1 + π)iϕ(NF (T )) ⊗̂OF SF∞/F = ϕ∗NF (T )ψ=0 ⊗̂OF SF∞/F .

�

3.4. Recovering unramified twists. Let us pick a finite-rank free Zp-module
M equipped with a continuous action of U , via a homomorphism ρ : ΛZp(U) →
EndZp(M) as above.

There is a “twisting” map from M ⊗Zp ΛZp(U) to itself, defined by m ⊗ [u] 7→
ρ(u)−1m ⊗ [u] for u ∈ U . This map intertwines two different actions of U : on the
left-hand side the action given by

u · (m⊗ [v]) = m⊗ [u−1v]
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and on the right the action given by

u · (m⊗ [v]) = ρ(u)m⊗ [u−1v].

Taking the completed tensor product with ÔF∞ (endowed with its natural U -action)
and passing to U -invariants, we obtain a bijection

iM : M ⊗Zp SF∞/F
∼=- SF∞/F ·

(
M ⊗Zp ÔF∞

)U
.

Proposition 3.13. There is a canonical isomorphism

(5) NF (T )⊗OF
(
ÔF∞ ⊗Zp M

)U
- NF (T ⊗Zp M),

commuting with the actions of A+
F , Γ, ϕ and ψ (where the latter two elements act

on ÔF∞ as the arithmetic Frobenius and its inverse).

Proof. Wach modules are known to commute with tensor products [Ber04], so it
suffices to check that

NF (M) = A+
F ⊗OF

(
ÔF∞ ⊗Zp M

)U
.

This follows from the fact that there is a canonical embedding of ÔF∞ into Fontaine’s
ring A, hence there is a canonical inclusion(

ÔF∞ ⊗Zp M
)U
⊆
(
M ⊗Zp A

)HF
= DF (M).

Since the left-hand side is free of rank d over OF , extending scalars to A+
F gives

a submodule of DF (M) which is free of rank d over A+
F and clearly satisfies the

conditions defining the Wach module NF (M) ⊂ DF (M). �

Remark 3.14. Suppose (for simplicity) that F = Qp and M ∼= Zp with U acting

via a character τ : U → Z×p . Since
(
M ⊗ ÔF∞

)U
is free of rank 1 over Zp, any

choice of basis of this space gives a non-canonical isomorphism between NQp(T (τ))

and NQp(T ) with its ϕ-action twisted by τ(σp)
−1. However, the isomorphism (5)

is canonical and does not depend on any such choice.

Theorem 3.15. There is a canonical isomorphism

iM : M ⊗Zp NF∞(T )
∼=- N∞(M ⊗Zp T )

which commutes with the actions of ϕ, Γ, A+
F and EndGF (M), and satisfies

iM (u · x) = ρ(u)−1u · iM (x)

for u ∈ U and x ∈ NF∞(T ).

Proof. This follows immediately by tensoring the map

iM : M ⊗Zp SF∞/F
∼=- SF∞/F ·

(
M ⊗Zp ÔF∞

)U
with NF (T ), and using the isomorphism (5). �
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4. The 2-variable p-adic regulator

4.1. A lemma on universal norms. Let F be a finite unramified extension of
Qp, and let T be a Zp-representation of GF .

Definition 4.1. The representation T is good crystalline if V = T [1/p] is crys-
talline and has non-negative Hodge-Tate weights.

By [Ber03, Theorem A.3], for any good crystalline T there is a canonical isomor-
phism

H1
Iw(F (µp∞), T )

∼=-
(
π−1NF (T )

)ψ=1
.

We define a “residue” map

rF,V : H1
Iw(F (µp∞), T )→ Dcris(F, V )

by composing the above isomorphism with the natural map

π−1NF (T )→ π−1NF (V )

NF (V )
∼=

NF (V )

πNF (V )
∼= Dcris(F, V ).

As is shown in the proof of [Ber03, Theorem A.3], the image of the map rF,V is con-
tained in Dcris(F, V )ϕ=1; in particular, if the latter space is zero, thenH1

Iw(F (µp∞), T ) ∼=
NF (T )ψ=1.

We now consider the behaviour of these maps in unramified towers. Let F∞
be an infinite unramified p-adic Lie extension of F , so we may write F∞ =

⋃
n Fn

where F0/F is a finite extension and Fn is the unramified extension of F0 of degree
pn. As we have seen above, Dcris(Fn, V ) ∼= Dcris(V ) ⊗F Fn. Let us formally write
Dcris(F∞, V ) = F∞ ⊗F Dcris(F, V ).

Proposition 4.2. There is an n0 (depending on V ) such that

Dcris(F∞, V )ϕ=1 = Dcris(Fn, V )ϕ=1.

Proof. Since the spaces Dcris(Fn, V )ϕ=1 are an increasing sequence of finite-dimensional
Qp-vector spaces, it suffices to show that their union Dcris(F∞, V )ϕ=1 is finite-
dimensional over Qp. This follows from the fact that F∞ is a field, and ϕ acts on
F∞ as the arithmetic Frobenius σp, so (F∞)ϕ=1 = Qp. Thus

dimQp (F∞ ⊗F Dcris(V ))
σp⊗ϕ=1 ≤ dimQp V,

by Propositions 1.4.2(i) and 1.6.1 of [Fon94a]. �

Proposition 4.3. Let Dcris(T ) be the Zp-lattice in Dcris(V ) which is the image
of NF (T ). If m ≥ n ≥ n0, x ∈ H1

Iw(Fm(µp∞), T ), and y = coresFm/Fn(x) ∈
H1

Iw(Fn(µp∞), T ), then we have

rFn,V (y) ∈ pm−nOFn ⊗OF Dcris(T ).

Proof. This follows from the fact that for any n ≥ 0, we have a commutative
diagram

H1
Iw(Fn+1(µp∞), T )

rFn+1,V- Dcris(Fn+1, V )ϕ=1

H1
Iw(Fn(µp∞), T )

coresFn+1/Fn

?
rFn,V- Dcris(Fn, V )ϕ=1.

TrFn+1/Fn

?
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If n ≥ n0, then the trace map on the right-hand side is simply multiplication by
[Fn+1 : Fn] = p. �

Theorem 4.4. Let F∞ be an infinite unramified p-adic Lie extension of F , and let
x ∈ H1

Iw(F∞(µp∞), T ). Then for any n ≥ 0, the image y of x in H1
Iw(F (µp∞), T ) ∼=(

π−1NF (T )
)ψ=1

is contained in NF (T )ψ=1.

Proof. This follows immediately from the preceding proposition, since rFn,V (y)
must be divisible by arbitrarily large powers of p and hence is zero. �

4.2. The regulator map. For the rest of Section 4, we assume that T is a good
crystalline representation of GF , for F a finite unramified extension of Qp, and we
let F∞ be any unramified p-adic Lie extension of F with Galois group U as before.
We define K∞ = F∞(µp∞), and G = Gal(K∞/F ) ∼= U × Γ.

Proposition 4.5. We have a canonical isomorphism

H1
Iw(K∞, T ) ∼=

(
π−1NF∞(T )

)ψ=1
.

If either F∞/F is infinite, or T has no quotient isomorphic to the trivial represen-
tation, then we have

H1
Iw(K∞, T ) ∼= NF∞(T )ψ=1.

Proof. If F∞/F is a finite extension, we may assume F∞ = F , and this is [Ber03,
Theorem A.1].

If F∞/F is an infinite extension, then we note that for each finite subextension
K/F contained in F∞ we have an isomorphism

H1
Iw(K(µp∞), T ) ∼=

(
π−1NK(T )

)ψ=1
,

and if L/K are two such fields, then the corestriction map

H1
Iw(L(µp∞), T ) - H1

Iw(K(µp∞), T )

corresponds to the maps

π−1NL(T ) - π−1NK(T )

induced from the trace map OL → OK . By Theorem 4.4, we have an isomorphism

H1
Iw(K∞, T ) = lim←−

K

(
π−1NK(T )

)ψ=1 ∼= lim←−
K

NK(T )ψ=1 = NF∞(T )ψ=1,

which finishes the proof. �

As shown in [LLZ11, Proposition 2.11], we have a ΛOF (Γ)-equivariant embedding(
ϕ∗NF (T )

)ψ=0 ⊂ HF (Γ)⊗F Dcris(V ),

which is continous with respect to the weak topology on ϕ∗NF (T )ψ=0 and the usual
Fréchet topology on HF (Γ). Moreover, we have a continuous injection

SF∞/F ↪→ ΛÔF∞
(U) ↪→ HF̂∞(U).

Tensoring these together we obtain a continuous, ΛOF (G)-linear map(
ϕ∗NF (T )

)ψ=0 ⊗̂OF SF∞/F ↪→ HF̂∞(U) ⊗̂OF HF (Γ)⊗F Dcris(V )

= HF̂∞(G)⊗F Dcris(V ).
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Definition 4.6. We define the p-adic regulator

LGV : H1
Iw(K∞, T ) - HF̂∞(G)⊗F Dcris(V )

to be the composite map

H1
Iw(K∞, T )

∼=- NF∞(T )ψ=1 ∼=
(
NF (T ) ⊗̂OF S∞

)ψ=1

1−ϕ-
(
ϕ∗NF (T )

)ψ=0 ⊗̂OF S∞
- HF̂∞(G)⊗F Dcris(V ).

Here, we use that ϕ∗NF∞(T )ψ=0 ∼= ϕ∗NF (T )ψ=0 ⊗̂Zp S∞ by Proposition 3.12.

By construction, LGV is a morphism of ΛOF (G)-modules. As suggested by the
notation, we will usually invert p and regard LGV as a map on H1

Iw(K∞, V ), associat-
ing to each compatible system of cohomology classes in H1

Iw(K∞, V ) a distribution

on G with values in F̂∞ ⊗F Dcris(V ).
We can summarise the properties of the map we have constructed by the following

theorem:

Theorem 4.7. Let F be a finite unramified extension of Qp, and K∞ a p-adic Lie
extension of F with Galois group G such that

F (µp∞) ⊆ K∞ ⊂ F ·Qab
p .

Let T be a crystalline representation of GF with non-negative Hodge–Tate weights,
and assume that either K∞/F (µp∞) is infinite, or T has no quotient isomorphic to
the trivial representation.

Then there exists a morphism of ΛOF (G)-modules

LGV : H1
Iw(K∞, T ) - HF̂∞(G)⊗F Dcris(V ),

where F∞ is the maximal unramified subfield of K∞, such that:

(1) for any finite unramified extension K/F contained in K∞, we have a com-
mutative diagram

H1
Iw(K∞/Qp, V )

LGV - HF̂∞(G)⊗F Dcris(V )

H1
Iw(K(µp∞), V )

? LG′V- HK(G′)⊗F Dcris(V ) ⊂- HF̂∞(G′)⊗F Dcris(V ).

??

Here G′ = Gal(K(µp∞)/Qp), the right-hand vertical arrow is the map on

distributions corresponding to the projection G � G′, and the map LG′V is
defined by

LG
′

V =
∑

σ∈Gal(K/F )

[σ] · LΓ
K,V (σ−1 ◦ x),

where LΓ
K,V is the Perrin-Riou regulator map for K(µp∞)/K.

(2) For any x ∈ H1
Iw(F∞(µp∞)/Qp, V ) and any character η of Γ, the distri-

bution prη(LG,V (x)) on U , which is defined by twisting by η and pushing
forward along the projection to U , is bounded.

Moreover, the conditions (1) and (2) above uniquely determine the morphism LGV .
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Proof. Let us show first that the map LGV defined above satisfies (1) and (2). Let
T be a choice of lattice in V .

Let K be any finite unramified extension of F contained in F∞. Then the
diagram

NF∞(T )ψ=1 1− ϕ- ϕ∗NF∞(T )ψ=0

NK(T )ψ=1

?
1− ϕ- ϕ∗NK(T )ψ=0

?

evidently commutes; and we also have a commutative diagram

ϕ∗NF (T )ψ=0 ⊗̂OF SF∞/F
iF∞/F- HF̂∞(G)⊗F Dcris(V )

ϕ∗NK(T )ψ=0 ⊗Zp SK/F

? iK/F- HF̂∞(G′)⊗F Dcris(V ),
?

where the arrows iF∞/F and iK/F are induced by the inclusions SF∞/F ↪→ HF̂∞(U)

and SK/F ↪→ OK [U ′] ↪→ F̂∞[U ′], where U ′ = Gal(K/F ), and the right vertical
arrow is the one arising from the projection G → G′. If we combine the two
diagrams using the identification NK(T ) ∼= NF (T )⊗F SK/F and similarly for F∞,

the composite of the maps on the top row is the definition of LGV , and the composite

of the arrows on the bottom row is the map LG′V . The commutativity of these
diagrams therefore proves (1).

Property (2) is clear, since the image of ΛF̂∞(U) in HF̂∞(U) is exactly the
bounded distributions.

We now show that these properties characterise LGV uniquely. It suffices to show
that (1) and (2) determine the value of LGV (x) at any character of G. Such a
character has the form η$ where η is a character of Γ and $ is a character of
U . Property (1) uniquely determines the value at η ×$ if $ has finite order, and
property (2) implies that for each fixed η, the function $ 7→ LGV (x)(η × $) is a
bounded analytic function on the rigid space parametrising characters of U , and
hence is determined uniquely by its values on finite-order $’s. �

We now record some properties of the map LGV .

Proposition 4.8. Let W ⊆ Dcris(V ) be a ϕ-invariant F -subspace such that all
eigenvalues of ϕ on the quotient Q = Dcris(V )/W have p-adic valuation ≥ −h
(where we normalise the p-adic valuation on Qp such that vp(p) = 1).

Then for any x ∈ H1
Iw(K∞, V ), the image of x under

H1
Iw(K∞, V )

LGV- HF̂∞(G)⊗F Dcris(V )→ HF̂∞(G)⊗F Q

lies in D(0,h)(G, F̂∞)⊗Q, where D(0,h)(G, F̂∞) is the space of F̂∞-valued distribu-
tions of order (0, h) with respect to the subgroups (U,Γ).

Proof. This is immediate from the definition of the 2-variable regulator map and
the corresponding statement for the 1-variable regulator, which is well known. �
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Proposition 4.9. If u ∈ U and ũ is the unique lifting of u to G acting trivially on
F (µp∞), then for any x ∈ H1

Iw(K∞, V ) we have

LGV (x)u = [ũ] · LGV (x).

Proposition 4.10. If m1, . . . ,md are a ΛOF (Γ)-basis of ϕ∗NF (T )ψ=0, and ω a
ΛOF (U)-basis of S∞, then the image of the p-adic regulator is contained in the
ΛOF (G)-span of the vectors (

i∞(mj ⊗̂ ω)
)
j=1,...,d

.

Proposition 4.11. If F∞/F is infinite, the regulator map LGV is injective.

Proof. As before, let us identify F∞ with the unramified Zp-extension of a finite
extension F0/F . Let prn : NF∞(T ) → NFn(T ) be the projection map; for x ∈
NF∞(T ), we have ϕ(x) = x if and only if prn(x) ∈ NFn(T )ϕ=1 for all n. However,

NFn(T )ϕ=1 ⊂ DFn(T )ϕ=1 = THFn .

As T is a finitely generated Zp-module, there must be some m such that THFn =

THFm for all n ≥ m. However, for n ≥ m the projection map THFn+1 → THFn

is multiplication by p; so prm(x) is divisible by arbitrarily high powers of p and is
thus zero. Hence x = 0. �

The next statement requires some extra notation. Let $ be a continuous char-
acter U → O×E , where E is some finite extension of Qp. Then there is an obvious
isomorphism

(6) H1
Iw(K∞, T ($)) ∼= H1

Iw(K∞, T )($).

Moreover, via the isomorphism V ⊗Qp Bcris
∼= Dcris(V )⊗F Bcris, we can regard the

space

Dcris(V ($)) =
(
E ⊗Qp V ⊗Qp Bcris

)GQp=$−1

as a subspace of E ⊗Qp Dcris(V ) ⊗F Bcris. Since the natural inclusion F̂∞ ↪→ Bcris

induces an injection

(E ⊗Qp K∞)U=$−1

↪→ (E ⊗Qp Bcris)
GQp=$−1

which must be an isomorphism (as the right-hand side must have E-dimension ≤ 1),
we have a canonical isomorphism

Dcris(V ($)) = Dcris(V )⊗F
(
E ⊗Qp K∞

)U=$−1

.

In particular, there is a canonical isomorphism

F̂∞ ⊗F Dcris(V ($)) ∼= E ⊗Qp F̂∞ ⊗F Dcris(V ).

We also have a canonical map

Tw$−1 : E ⊗Qp HF̂∞(G)→ E ⊗Qp HF̂∞(G)

which on group elements corresponds to the map g 7→ $(g)−1g. Tensoring with the
canonical isomorphism above, we obtain a map (which we also denote by Tw$−1)

E ⊗Qp HF̂∞(G)⊗F Dcris(V ) - HF̂∞(G)⊗F Dcris(V ($)).
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Proposition 4.12. With the identifications described above, the regulator LGV is
invariant under unramified twists: there is a commutative diagram

OE ⊗H1
Iw(K∞, T )

LGV- E ⊗Qp HF̂∞(G)⊗F Dcris(V )

H1
Iw(K∞, T ($))

∼=

? LGV ($)- HF̂∞(G)⊗F Dcris(V ($))

Tw$−1

?

Proof. By (6), we have canonical isomorphismsH1
Iw(K∞, T )⊗ZpOE ∼= NF∞(T )ψ=1⊗Zp

OE , and H1
Iw(K∞, T ($)) ∼= NF∞(T ($))ψ=1. We can therefore rewrite the above

diagram to obtain the following:

NF∞(T )ψ=1 ⊗Zp OE
1− ϕ- NF∞(T )ψ=0 ⊗Zp OE - HF̂∞(G)⊗Qp Dcris(V )⊗Qp E

NF∞(T ($))ψ=1

?
1− ϕ- NF∞(T ($))ψ=0

?
- HF̂∞(G)⊗Qp Dcris(V ($)).

Tw$−1

?

Here the left and middle vertical maps are obtained by restriction from that of
Theorem 3.15, taking τ = $−1; as noted above, this isomorphism commutes with
ϕ and ψ.

The commutativity of the left square is clear. Moreover, the isomorphisms

NF (T ($)) ∼= NF (T )⊗Zp

(
OE ⊗Zp ÔF∞

)U=$−1

and

Dcris(V ($)) ∼= Dcris(V )⊗Zp

(
OE ⊗Zp ÔF∞

)U=$−1

are compatible (since the first is given by multiplication in A, the second in Bcris,

and the inclusion of ÔF∞ in Bcris factors through the natural maps A+ ↪→ Ã+ ↪→
Acris). Hence the commutativity of the right square follows, as the twisting maps
ΛÔF∞

(U)→ ΛÔF∞
(U) and HF̂∞(U)→ HF̂∞(U) are evidently compatible.

�

4.3. An explicit formula for the values of the regulator. In this section, we
use the results from the previous section to give a direct interpretation of the value
of the regulator map LGV at any de Rham character of G, relating these to the
values of the Bloch-Kato exponential maps for V and its twists. In this section we
assume (for simplicity) that F = Qp.

As above, let $ be a continuous character of U with values in OE , for some finite
extension E/Qp. Combining Proposition 4.12 with the defining property of LGV ($)

in Theorem 4.7, we have:
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Theorem 4.13. The following diagram commutes:

H1
Iw(K∞, V )

LGV - HF̂∞(G)◦ ⊗Qp Dcris(V )

H1
Iw(Qp(µp∞), V ($))

pr$Iw

? LΓ
V ($)- HQp(Γ)⊗Qp Dcris(V ($)).

pr$cris

?

HereHF̂∞(G)◦ denotes the subspace ofHF̂∞(G) satisfying the Galois-equivariance

property of Proposition 4.9. The map pr$Iw is the composite of the isomorphism (6)
with the corestriction map; the right-hand vertical map is the composite of Tw$−1

with push-forward to Γ. (Hence both vertical maps are U -equivariant, if we let U
act on the bottom row by $−1.)

We now apply the results of §B to each unramified twist V ($) of V to determine
exactly the values of LGV at any character of G which is Hodge–Tate, in terms of
the dual exponential and logarithm maps (cf. §2.4 above).

Definition 4.14. Let ω be any continuous character of G with values in some
finite extension E/Qp. For x ∈ H1

Iw(K∞, V ), we write xω,0 for the image of x in
H1(Qp, V (ω−1)).

We can now apply Theorem B.5 to obtain the following formulae for the values
of LGV :

Theorem 4.15. Let x ∈ H1
Iw(K∞, V ). Let j be the Hodge–Tate weight of ω, and

n its conductor. If n = 0, suppose that Dcris(V (ω−1))ϕ=p−1

= 0. Then we have

LGV (x)(ω) = Γ∗(1 + j) · ε(ω−1) · ΦnP (ω−1,Φ)

P (ω, p−1Φ−1)

×

{
exp∗V (ω−1)∗(1)(xω,0)⊗ t−jej if j ≥ 0,

logQp,V (ω−1)(xω,0)⊗ t−jej if j ≤ −1,

where the notation is as follows:

• Γ∗(1+j) is the leading term of the Taylor expansion of the Gamma function
at 1 + j,

Γ∗(1 + j) =

{
j! if j ≥ 0,
(−1)−j−1

(−j−1)! if j ≤ −1.

• Pω and ε(ω) are the L and ε-factors of the Weil–Deligne representation
Dpst(ω) (see §2.8 above).

• Φ denotes the operator on Dcris(V )⊗Qp F̂∞ which is obtained by extending

the Frobenius of Dcris(V ) to act trivially on F̂∞ (rather than as the usual

Frobenius on F̂∞).

Remark 4.16. To define LGV we made a choice of compatible system of p-power roots
of unity ζ; but the dependence of LGV on ζ is clear from the formula of Theorem
4.15. If we temporarily write LGV (x, ζ) for the regulator using the roots of unity ζ,
then for any γ ∈ Γ we have

LGV (x, γζ)(ω) = ω(γ̃)−1LGV (x, ζ)(ω),

where γ̃ is the unique lifting of γ to the inertia subgroup of G.



IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER Z2
p-EXTENSIONS 21

4.4. A local reciprocity formula. Our final local result will be an analogue of
Perrin-Riou’s local reciprocity formula, relating the maps LGV and LGV ∗(1). The

cyclotomic version of this formula, conjecture Rec(V ) in [PR94], was originally
formulated in terms of Perrin-Riou’s exponential map ΩV,h, and proved indepen-
dently by Colmez [Cz98] and Benois [Ben00]. In Appendix B below we formulate
and prove a version using the map LΓ

V instead.
Here, as in Appendix B, it will be convenient to us to extend the definition of the

regulator map to representations which are crystalline, but which may have some
negative Hodge–Tate weights. To do this, we note that if V is good crystalline,
then for any k ≥ 0 we have

Twχ

(
LGV (1)(x⊗ e1)

)
= `−1

(
LGV (x)

)
⊗ t−1e1.

So for arbitrary V , and any j � 0 such that V (j) is good crystalline, we may define
LGV by the formula

LGV (x) = (`−1 ◦ · · · ◦ `−j)−1
(

Twχj

(
LGV (j)(x⊗ ej)

))
⊗ tje−j

and this does not depend on the choice of j; this then takes values in the fraction
field of HF̂∞(G).

Theorem 4.17. For any crystalline representation V and any classes x ∈ H1
Iw(K∞, V )

and y ∈ H1
Iw(K∞, V

∗(1)), we have

〈LGV (x),LGV ∗(1)(y)〉cris,V = −σ−1 · `0 · 〈x, y〉K∞,V ,

where σ−1 denotes the unique element of the inertia subgroup of G such that
χ(σ−1) = −1.

Proof. Using Lemma 2.4 and Proposition 4.12 for each unramified character τ of
G reduces this immediately to the corresponding statement for the cyclotomic reg-
ulator maps LΓ

V (τ), which is Theorem B.6. �

5. Regulators for extensions of number fields

In this section, we show how to define an extension of the regulator map in the
context of certain p-adic Lie extensions of number fields. This section draws heavily
on the cyclotomic case studied by Perrin-Riou in [PR94]; see also [IP06] for the case
of more general Zp-extensions of number fields.

Let K be a number field, p a (rational) prime, and p a prime of K above p. We
choose a prime P of K above p.

5.1. Semilocal cohomology. Let T be a finitely generated Zp-module with a
continuous action of GK . For each finite extension L of K, the set of primes q of L
above p is finite, and for each i we may define the semilocal cohomology group

Zip(L, T ) =
⊕
q|p

Hi(Lq, T ).

If L/K is Galois, with Galois group G, then we have a canonical isomorphism

(7) Zip(L, T ) ∼= Zp[G]⊗Zp[GP] H
i(LP, T ),
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where GP is the decomposition group of P in G. In particular, it has an action of
Zp[G], and it is easy to see that the localization map

locp =
⊕
q|p

locq : Hi(L, T )→ Zip(L, T )

is G-equivariant.
If now K∞/K is a p-adic Lie extension of number fields with Galois group G,

we may define semilocal Iwasawa cohomology groups

ZiIw,p(K∞, T ) = lim←−
K′

Zip(K ′, T ),

where the inverse limit is over finite Galois extensions K ′/K contained in K∞. The
isomorphisms (7) for each finite subextension imply that

(8) ZiIw,p(K∞, T ) = ΛZp(G)⊗ΛZp (GP) H
i
Iw(K∞,P, T ).

Theorem 5.1. Let K∞/K be any p-adic Lie extension of number fields with Galois
group G, p a prime of K above p, and P a prime of K above p, such that

• Kp is unramified over Qp,
• the completion K∞,P is of the form F∞(µp∞), for F∞ an infinite unramified

extension of Kp.

Then there is a unique homomorphism of ΛZp(G)-modules

LGV : Z1
Iw,p(K∞, V )→ HF̂∞(G)⊗Qp Dcris(Kp, V ),

where F̂∞ is the p-adic completion of the maximal unramified subfield of K∞,P,

whose restriction to H1
Iw(K∞,P, V ) is the local regulator map LGP

V .

Proof. Immediate by tensoring the local regulator LGP

V with ΛZp(G), using equation
(8). �

Remark 5.2. Note that if p is finitely decomposed in K∞, so [G : GP] is finite, one
can describe LGV as a direct sum of local regulators:

LGV (x) =
⊕

σ∈G/GP

[σ] · LGP

V (locp σ
−1(x)).

However, the construction also applies when p is infinitely decomposed. Thus, for
instance, if d > 1 and K is a CM field of degree 2d in which p splits completely,
then one can take K∞ to be the (d + 1)-dimensional abelian p-adic Lie extension
given by the ray class field K(p∞).

Remark 5.3. One can use the regulator maps to construct Coleman maps and
restricted Selmer groups of V over K∞, in the spirit of the constructions in [LLZ10]
for the cyclotomic extension.

5.2. The module of p-adic L-functions. We now assume that the number field
K is totally complex and Galois over Q, and that p splits completely in K, (p) =
p1 . . . pe. For each of these primes, fix an embedding of Q into Kpi . Let T be a
Zp-representation of GK , and let V = T [p−1].

Assumption 5.4. For all 1 ≤ i ≤ e, the restriction of V to GKpi
is good crystalline.
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Let S be the finite set of primes of K containing all the primes above p, all the
archimedean places and all the places whose inertia group acts non-trivially on T .
Denote by KS the maximal extension of K unramified outside S. Let K∞ be a
p-adic Lie extension of K contained in KS which is Galois over Q and satisfies the
conditions of Theorem 5.1 for each of the primes p1, . . . , pe.

Definition 5.5. Define H1
Iw,S(K∞, T ) = lim←−H

1(Gal(KS/Kn), T ), where {Kn} is

a sequence of finite extensions of K such that K∞ =
⋃
Kn. We also let

H1
Iw,S(K∞, V ) = H1

Iw,S(K∞, T )⊗Zp Qp.

Assumption 5.6. The Galois group G = Gal(K∞/K) has no element of order p.

Remark 5.7. Examples of p-adic Lie extensions satisfying the above hypotheses
occur naturally in the context of class field theory; for instance, if K is a CM
field in which p splits, and K∞ the ray class field K(p∞), all the conditions are
automatic except possibly 5.6, and this may be dealt with by replacing K∞ by a
finite subextension. We shall study extensions of this type in more detail in §6
below, where we take K to be an imaginary quadratic field.

As K∞ is a Galois extension of Q, the Galois groups Gal(K∞,pi/Kpi), 1 ≤ i ≤ e,
are conjugate to each other in Gal(K∞/Q), as are their inertia subgroups. If
L∞,i denotes the maximal unramified extension of Kp,i in K∞,pi , we get canonical
identifications of L∞,i with L∞,j for all 1 ≤ i, j ≤ e. We can therefore drop the
index and denote this unramified extension of Qp by F∞.

As explained in Section 5, for 1 ≤ i ≤ e, we have a regulator map

LGV,pi : Z1
Iw,pi(K∞, T )→ Dcris,pi(V )⊗Qp HF̂∞(G).

Via the localisation map locpi : H1
Iw,S(K∞, T )→ Z1

Iw,pi
(K∞, T ), it induces a map

H1
Iw,S(K∞, T ) - HF̂∞(G)⊗Qp Dcris,pi(V )

which we also denote by LGV,pi . Let

Dp(V ) = Dcris

((
IndK/Q V

)
|GQp

)
∼=

e⊕
i=1

Dcris,pi(V ).

Define

LGV =

e⊕
i=1

LGV,pi : H1
Iw,S(K∞, V ) - HF̂∞(G)⊗Qp Dp(V ).

Denote by KF̂∞(G) the fraction field of HF̂∞(G). Assume that Conjecture

Leop(K∞, V ) (as formulated in §A.3 below) olds, so H2
Iw(K∞/K, V ) is ΛQp(G)-

torsion. Let d = 1
2 [K : Q] dimQp(V ). As rankΛZp (G)H

1
Iw,S(K∞, T ) = d by Theorem

A.4, the regulator LGV induces a map2

detLGV : det
ΛQp (G)

H1
Iw,S(K∞, V ) - KF̂∞(G)⊗Qp

d∧
Dp(V ).

2For the definition of the determinant of a finitely generated ΛZp (G)-module, see [KM76]; c.f. also

[PR94, §3.1.5].
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Definition 5.8. Define Iarith,p(V ) to be the ΛQp(G)-submodule of KF̂∞(G) ⊗Qp∧d Dp(V )

Iarith,p(V ) = detLGV
(
H1

Iw(K∞, T )
)
⊗
(
detH2

Iw(K∞, T )
)−1

.

In the spirit of Perrin-Riou (c.f. [PR03, §3.1]), we can give an explicit description
of Iarith,p(V ) as follows. Let f2 ∈ ΛQp(G) be a generator of the characteristic ideal

of H2
Iw(K∞, T ), so detH2

Iw(K∞, T ) = f−1
2 ΛQp(G).

Proposition 5.9. Let c = {c1, . . . , cd} ⊂ H1
Iw,S(K∞, V ) be elements such that if

C denotes the ΛQp(G)-submodule of H1
Iw,S(K∞, V ) spanned by the elements of c,

then the quotient H1
Iw,S(K∞, V )/C is ΛQp(G)-torsion. Denote by fc ∈ ΛQp(G) the

corresponding characteristic element. Then

Iarith,p(V ) = ΛQp(G) f2f
−1
c LGV (c1) ∧ · · · ∧ LGV (cd).

Proof. Clear from the construction. �

Remark 5.10. If H1
Iw,S(K∞, V ) is free as a ΛQp(G)-module, then Iarith,p(V ) must

be contained in HF̂∞(G).

Remark 5.11. Via the isomorphism

KF̂∞(G)⊗
d∧
Dp(V ) ∼= HomQp

( d∧
Dp(V ∗(1)),KF̂∞(G)

)
,

we can consider the ΛQp(G)-module Iarith,p(V ) as a submodule of

HomQp
( d∧

Dp(V ∗(1)),KF̂∞(G)
)
.

The following proposition implies that Iarith,p(V ) 6= 0:

Proposition 5.12. Assume that conjecture Leop(K∞, V
∗(1)) holds. Then the ker-

nel of the homomorphism

locp : H1
Iw,S(K∞, T ) -

e⊕
i=1

Z1
Iw,pi(K∞, T )

is ΛZp(G)-torsion.

Proof. We adapt the arguments in [PR95, §A.2]. For 0 ≤ j ≤ 2, define the ΛZp(G)-
modules

ZjS(K∞, T ) =
⊕
v∈S

Hj
Iw(K∞,v, T ) and Zjp(K∞, T ) =

e⊕
i=1

ZjIw,pi(K∞, T ).

Also, define

Xi
∞,S(K∞, T ) = Hi

(
GS(K∞), V ∗(1)/T ∗(1)

)
.

Taking the limit over the Km,n of the Poitou-Tate exact sequence gives an exact
sequence of ΛZp(G)-modules

0 - X2
∞,S(K∞, T )∨ - H1

Iw,S(K∞, T )
locS- Z1

S(K∞, T )

- X1
∞,S(K∞, T )∨ - H2

Iw,S(K∞, T ) - Z2
S(K∞, T )

- X0
∞,S(K∞, T )∨ - 0.



IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER Z2
p-EXTENSIONS 25

By Theorem A.4, since we are assuming Leop(K∞, V
∗(1)), the moduleX2

∞,S(K∞, T )

is ΛZp(G)-cotorsion. Thus ker(locS) is ΛZp(G)-torsion. As

rankΛZp (G) Z
1
S(K∞, T ) = rankΛZp (G) Z

1
p(K∞, T )

by Proposition A.2, this implies the result. �

Corollary 5.13. If conjecture Leop(K∞, V ) holds, the ΛZp(G)-module Iarith,p(V )
is non-zero.

Proof. Consequence of Propositions 5.12 and 4.11. �

As in the cyclotomic case, we conjecture that Iarith,p(V ) should have a canonical
basis vector – a p-adic L-function for V – whose image under evaluation at de
Rham characters of G is related to the critical L-values of V and its twists. In the
above generality this is a somewhat vain exercise as even the analytic continuation
and algebraicity of the values of the complex L-function is conjectural. In the next
section, we shall make this philosophy precise in some special cases; we shall show
that it is consistent with known results regarding p-adic L-functions, but that it
also implies some new conjectures regarding p-adic L-functions of modular forms.

6. Imaginary quadratic fields

6.1. Setup. Throughout this section, let K be an imaginary quadratic field in
which p splits; write (p) = pp̄. We now introduce a specific class of extensions
K∞/K for which the hypotheses in Section 5.2 are satisfied. Let f be an integral
ideal of K prime to p and p̄, and let K∞ be the ray class field K(fp∞). We assume
that f is stable under Gal(K/Q), which is equivalent to the assumption that K∞ is
Galois over Q. It is well known that K∞ ⊇ K(µp∞), and that the primes p and p̄
are finitely decomposed in K; so G = Gal(K∞/K) is an abelian p-adic Lie group
of dimension 2, and the decomposition groups Gp and Gp̄ are open subgroups.

Lemma 6.1. If p is coprime to the order of the ray class group Clf(K), then G
has no elements of order p.

Proof. By class field theory, we have an exact sequence

0 - Uf
- (OK ⊗ Zp)× - Clfp∞(K) - Clf(K) - 0,

where Uf is the group of units of OK that are 1 modulo f and Uf is the closure of
Uf in (OK ⊗ Zp)×. So it suffices to show that the quotient

(OK ⊗ Zp)×

Uf

is p-torsion-free. However, since K is imaginary quadratic, Uf = Uf is a finite group,

and as p is odd and split in K, we have p - |Uf|. Since (OK ⊗Zp)× is p-torsion-free,
the result follows. �

Let us write Γp = Gal(K∞/K(fp̄∞)) and Γp̄ = Gal(K∞/K(fp∞)). Note that Γp

and Γp̄ are p-adic Lie groups of rank 1 whose intersection is trivial, and the open
subgroup Gal(K∞/K(f)) is isomorphic to Γp × Γp̄.

Let T be a Zp-representation of GK of rank d, and let V = T [p−1]. As in the
previous section, assume that for ? ∈ {p, p̄}, the restriction of V to GK? is good
crystalline.
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Lemma 6.2. We have a canonical decomposition

d∧
Dp(V ) ∼=

⊕
m+n=d

(
m∧

Dcris,p(V )⊗Qp

n∧
Dcris,p̄(V )

)
.

Proof. Clear from the definition. �

To simplify the notation, let us write

Dp(V )(m,n) =

m∧
Dcris,p(V )⊗Qp

n∧
Dcris,p̄(V ).

6.2. Galois descent of the module of L-functions.

Definition 6.3. For m,n ∈ N such that m + n = d, define I(m,n)
arith,p(V ) to be the

image of Iarith,p(V ) in KF̂∞(G) ⊗Qp Dp(V )(m,n) induced from the projection map∧d Dp(V ) - Dp(V )(m,n).

The following theorem is the main result of this section:

Theorem 6.4. If d = 2n, then I(n,n)
arith,p(V ) ⊂ KL(G) ⊗Qp Dp(V )(n,n), where L is a

finite unramified extension of Qp.

The rest of this section is devoted to proving this theorem. As in Proposition 4.9,
let σ̃p ∈ Gp be the unique element of Gp which lifts the Frobenius automorphism
at p of K(fp̄∞) and which is trivial on K(µp∞), and similarly for p̄.

Lemma 6.5. The element σ̃pσ̃p̄ ∈ G has finite order.

Proof. Let us consider the “semilocal Artin map”

θ = (θp, θp̄) : K×p ×K×p̄ → G.

Here θp is the Artin map for Kp, normalised so that uniformisers map to geometric
Frobenius elements. The kernel of θ is the image in K×p ×K×p̄ of the elements of

K× which are units outside p and congruent to 1 mod f.
By the functoriality of the global Artin map (cf. [Neu99, VI.5.2]), there is a

commutative diagram

K×p ×K×p̄
θ - G

Q×p

NK/Q

?
- Γ,

?

The bottom horizontal map is the local Artin map for Q(µp∞)/Q; if we identify Γ
with Z×p , this map is the identity on Z×p and sends p to 1.

Consider the element (p, 1) of K×p × K×p̄ . The image of this in the group

Gal(K(fp̄∞)/K) is the Frobenius σp. Its image in Q×p is p, which is mapped to
the identity in Γ. Hence the image of (p, 1) in G is σ̃p. Similarly, (1, p) is a lifting
of σ̃p̄.

Hence σ̃pσ̃p̄ is the image of the element (p, p) of K×p ×K×p̄ . Thus if m is such that

pm = 1 mod f, (pm, pm) ∈ K×p ×K×p̄ is in the kernel of θ, and hence (σ̃pσ̃p̄)m = 1
in G. �
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Corollary 6.6. Let x1, . . . , xn be any elements of Z1
p(K∞, V ), and similarly let

y1, . . . , yn ∈ Z1
p̄(K∞, V ). Then the element(
LGV,p(x1) ∧ · · · ∧ LGV,p(xn)

)
⊗
(
LGV,p̄(y1) ∧ · · · ∧ LGV,p̄(yn)

)
of HF̂∞(G)⊗Qp Dp(V )(n,n) in fact lies in HL(G)⊗Qp Dp(V )(n,n), where L is a finite
unramified extension of Qp.

Proof. Clear, since the Frobenius automorphism of F̂∞ acts on this element as
multiplication by [σ̃pσ̃p̄]n, which we have seen has finite order. �

Remark 6.7. As is clear from the proof of the lemma and its corollary, the degree
of L/Qp is bounded by the exponent of the ray class group of K modulo f, and in
particular is independent of V .

We deduce Theorem 6.4 by combining Corollary 6.6 with Proposition 5.9.

6.3. Orders of distributions. Let us choose subspaces Wp ⊆
∧m Dcris(Kp, V )

and Wp̄ ⊆
∧nDcris(Kp̄, V ). Then the space

Q =

(
m∧

Dcris(Kp, V )/Wp

)
⊗Qp

(
n∧
Dcris(Kp̄, V )/Wp̄

)
is a quotient of Dp(V )(m,n) and hence of Dp(V ). So, for any c1, . . . , cd ∈ H1

Iw,S(K∞, V ),
we may consider the projection of

LGV (c1, . . . , cd) = LGV (c1) ∧ · · · ∧ LGV (cd)

to Q.

Theorem 6.8. The distribution prQ
(
LGV (c1) ∧ · · · ∧ LGV (cd)

)
is a distribution on

G of order (mhp, nhp̄) with respect to the subgroups (Γp,Γp̄), where hp (resp. hp̄)
is the largest valuation of any eigenvalue of ϕ on ∧mDcris(Kp, V )/Wp (resp. on
∧nDcris(Kp̄, V )/Wp̄).

Proof. Let us write cj,p for the localisation of cj at p, and similarly for p̄. By
Proposition 4.8, for each subset {j1, . . . , jm} ⊆ {1, . . . , d} of order m, the projection
of the element

LGV,p(cj1,p) ∧ · · · ∧ LGV,p(cjm,p)

to
∧m Dcris(Kp, V )/Wp is a distribution of order (hp, 0) with respect to the sub-

groups (Γp, U), where U = Gal(K∞/K(µp∞)). By the change-of-variable result
of Proposition C.1 in the appendix, it is also a distribution of order (hp, 0) with
respect to the subgroups (Γp,Γp̄).

We have also a corresponding result for the projection to
∧nDcris(Kp̄, V )/Wp̄

of the distribution obtained from any n-element subset of {1, . . . , d}: this gives
a distribution with order (0, hp̄) with respect to (Γp,Γp̄). Since the product of
distributions of order (a, 0) and (0, b) is a distribution of order (a, b) by Proposition
C.3, the product of any two such subsets gives a distribution with values in Q of
order (hp, hp̄). Since prQ

(
LGV (c1) ∧ · · · ∧ LGV (cd)

)
is a finite linear combination of

products of this form, the theorem follows. �

6.4. Example 1: Grössencharacters and Katz’s L-function.
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6.4.1. Kummer maps. We recall the well-known local theory of exponential maps
for the representation Zp(1). For any finite extension L/Qp, there is a Kummer
map κL : O×L → H1(L,Zp(1)), whose kernel is the Teichmüller lifting of k×L . In
particular, the restriction to the kernel U1(L) of reduction modulo the maximal
ideal is an injection.

Moreover, after inverting p, we have a commutative diagram relating the Kum-
mer map to the exponential map of Bloch–Kato (see [BK90]):

Qp ⊗Zp U
1(L)

κL - H1(L,Qp(1))

DdR,L(Qp(1))
? expL,Qp(1)- H1(L,Qp(1))

wwwwwwwww
where the vertical map sends u to t−1 log(u) ⊗ e1, where e1 is the basis vector of
Qp(1) corresponding to our compatible system of roots of unity.

The maps κL are compatible with the norm and corestriction maps for finite
extensions L′/L, so for an infinite algebraic extension K∞/Qp we can take the
inverse limit over the finite extensions of Qp contained in K∞ to define

κK∞ : U1(K∞) - H1
Iw(K∞,Qp(1)),

where U1(K∞) := lim←−K′⊂K∞ U
1(K ′).

6.4.2. Coleman series. We recall the following basic result, due to Coleman. Let
F be any height 1 Lubin–Tate group over Qp, and F an unramified extension of
Qp. Fix a generator v = (vn) of the Tate module of F (that is, a norm-compatible
sequence of pn-torsion points of F).

Theorem 6.9 ([Col79]). Let F be a finite unramified extension of Qp. Then for
each β = (βn) ∈ U1(F (Fp∞)), there is a unique power series

gF,F (β) ∈ OF [[X]]×,NF=1

where NF is Coleman’s norm operator, such that for all n ≥ 1 we have

βn = [gF,F (β)]σ
−n

(vn).

Here σ is the arithmetic Frobenius automorphism of F/Qp, which we extend to
an automorphism of OF [[X]] acting trivially on the variable X.

If F is the formal multiplicative group Ĝm, then we shall drop the suffix F ; and
we take vn = ζn−1, where (ζn) is our chosen compatible sequence of p-power roots
of unity. In this case, if we identify X with the variable π in Fontaine’s rings, the
relation between the map gF and the Perrin-Riou regulator map is given by the
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following diagram:

U1(F (µp∞))
κF (µp∞ ) - H1

Iw(F (µp∞),Zp(1))

OF [[π]]×,N=1

gF

?

OF [[π]]ψ=0

(1− ϕ
p ) log

?
- H(Γ)⊗Qp Dcris(F,Qp(1))

LΓ
F,Qp(1)

?

If we identify Dcris(F,Qp(1)) with F via the basis vector t−1 ⊗ e1, then the

bottom map sends f ∈ OF [[π]]ψ=0 to `0 ·M−1(f), where `0 = log γ
logχ(γ) for any non-

identity element γ ∈ Γ1 and M is the Mellin transform as defined in Section 2.3.
(See e.g. the proof of Proposition 1.5 of [LLZ11].) Thus the image of the bottom
map is precisely `0 · ΛOF (Γ) ⊆ HF (Γ); and if we define

hF (β) = `−1
0 · LΓ

F,Qp(1)(κF∞(β)) ∈ ΛOF (Γ),

then we have

M(hF (β)) = (1− ϕ
p ) log gF (β).

6.4.3. Two-variable Coleman series. Now let K∞/Qp be an abelian p-adic Lie ex-
tension containing Qp(µp∞) such that G = Gal(K∞/Qp) is a p-adic Lie group of

dimension 2. Let F̂∞ be the completion of the maximal unramifed subextension of
K∞. We define

h∞ : U1(K∞)→ ΛÔF∞
(G)

to be the unique map such that the composite

U1(K∞)
κK∞- H1

Iw(K∞/Qp,Zp(1))
LGQp(1)- HF̂∞(G)

is equal to `0 · h∞.

Proposition 6.10. The element h∞(β) is uniquely determined by the relation

h∞(β) =
∑
σ∈UF

hF (βF )σ[σ] (mod IF )

for all unramified subextensions F ⊂ K∞, where UF = Gal(F/Qp), IF is the kernel
of the natural map ΛÔF∞

(G)→ ΛÔF∞
(UF × Γ), and βF denotes the image of β in

U1(F (µp∞)).

Proof. This follows from the compatibility of the maps LΓ and LG (Theorem 4.7(i)).
�

We would like to compare this result to Theorem 5 of [Yag82]. Our method differs
from that of Yager, as we build measures on G out of measures on the Galois groups
of extensions F (µp∞)/F for unramified extensions F ⊂ K∞, while Yager considers
instead the extensions F (Fp∞)/F where F is the Lubin–Tate group corresponding
to an elliptic curve with CM by OK .
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Let F be any Lubin–Tate formal group over Qp which becomes isomorphic to

Ĝm over F̂∞. If F is any finite unramified extension of Qp contained in K∞, then
F (Fp∞) ⊆ K∞. For any β ∈ U1(K∞), let βF,F be its image in U1(F (Fp∞)). Then
Coleman’s theorem (Theorem 6.9) gives us an element

gF,F (βF,F ) ∈ OF [[X]]×,NF=1.

We write

hF,F (βF,F ) = M−1
[(

1− ϕ
p

)
log (gF,F (β) ◦ θ)

]
where θ is the unique power series in ÔF∞ [[X]] giving an isomorphism F

∼=- Ĝm
such that vn maps to ζn − 1.

Theorem 6.11 (de Shalit). We have

h∞(β) =
∑
σ∈UF

hF,F (βF,F )σ[σ] (mod IF,F ),

where IF,F is the kernel of the natural map

ΛÔF∞
(G) - ΛÔF∞

(Gal(F (Fp∞)/F )).

Proof. See [DS87, §I.3.8]. (Note that the theorem is stated there for K∞ = Qab
p ,

the maximal abelian extension of Qp; but the theorem, and the proof given, are true
with K∞ replaced by any smaller extension over which the formal groups concerned
become isomorphic.) �

It follows that the map h∞ defined above coincides with the map constructed
(under more restrictive hypotheses) by Yager in [Yag82]. In particular, if c denotes
the element of the global H1

Iw obtained by applying the Kummer map to the elliptic
units, then LGp,V (c) is equal to `0µ where µ is Katz’s p-adic L-function.

6.5. Example 2: Two-variable L-functions of modular forms. We now con-
sider the restriction to GK of the representation V of GQ attached to a modular

form f of weight 2, level N prime to p∆K/Q, and character δ. Let E ⊆ Qp be

the completion of Q(f) ⊆ Q at our chosen prime of Q. We take V = V ∗f , so

V has Hodge–Tate weights {0, 1} at each of p and p̄. Let {α, β} be the roots of
X2 − apX + pδ(p), so the eigenvalues of ϕ on either Dcris(Kp, V ) or Dcris(Kp̄, V )
are α−1 and β−1.

Definition 6.12. A p-refinement of f is a pair u = (up, up̄) ⊆ {α, β}×2. We say
that u is non-critical if vp(up), vp(up̄) < 1; otherwise u is critical.

Let K∞ be an extension of K with Galois group G, satisfying the hypotheses
specified in Section 6.1. For a finite-order character ω of G, let L{p,p̄}(f/K, ω

−1, s)
denote the twisted L-function of f with the Euler factors at p and p̄ removed.
Let Ω+

f and Ω−f be the real and complex periods of f (which are defined up to

multiplication by an element of Q(f)×).

Conjecture 6.13 (Existence of L-functions). Let (up, up̄) be a p-refinement which
is non-critical. Then there exists a distribution µf (up, up̄) on G, of order (vp(up), vp(up̄))
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with respect to the subgroups (Γp,Γp̄), such that for all finite-order characters ω we
have ∫

G

ω dµf (up, up̄) = ∏
q∈{p,p̄}

u−cq(ω)
q eq(ω

−1)
Pq(ω

−1, u−1
q )

Pq(ω, p−1uq)

 L{p,p̄}(f/K, ω
−1, 1)

Ω+
f Ω−f

.(9)

Remark 6.14. The definition of the order of a distribution on Z2
p is given in Section

C.2. The hypothesis that the p-refinement be non-critical implies that the distribu-
tion µf (up, up̄) is unique if it exists, since a distribution of order (r, s) with r, s < 1
is uniquely determined by its values at finite-order characters.

Two approaches are known to the construction of such L-functions: either via
p-adic interpolation of Rankin–Selberg convolutions, as in [Hid88, PR88, Kim11],
or via the combinatorics of modular symbols on symmetric spaces attached to
GL(2,AK), as in [Har87]. The details have not been written down in the full
generality described above (although M. Emerton and B. Zhang have announced
results of this kind in a paper which is currently in preparation). The literature to
date contains constructions of µf (up, up̄) in the following cases:

• if f is ordinary, δ = 1, and u is the “ordinary refinement” (α, α) where α
is the unit root [Har87]
• if f is ordinary, u is the ordinary refinement, and G decomposes as a direct

product of eigenspaces for complex conjugation [PR88]
• if f is non-ordinary, up = up̄, [K(fp) : K] is prime to p, δ2 = 1, and we con-

sider only the restriction of the distribution to the set of characters whose
restriction to Gal(K(fp)/K) does not factor through a Dirichlet character
via the norm map [Kim11].

Remark 6.15. (i) We have chosen to write the interpolating formula (9) in a way
that emphasises the similarity with that of [CFK+05]. The cited references use a
range of different formulations, and the distributions they construct differ from ours
by various correction factors; but in each case the existence of a measure satisfying
their conditions is equivalent to the conjecture above.

(ii) If f is ordinary and u is the ordinary refinement, the condition that µf (u)
has order (0, 0) is simply that it be a measure. In the non-ordinary case considered
by Kim, the condition that µf (u) has order (vp(up), vp(up̄)) is more delicate, and
depends crucially on the decomposition of Gal(K∞/K(f)) as the direct product of
the distinguished subgroups Γp and Γp̄ corresponding to the two primes above p.

We now give a conjectural interpretation of these p-adic L-functions in terms of
our regulator map LGV . Let us write

Z1
Iw,p(V ) = Z1

Iw,p(V )⊕ Z1
Iw,p̄(V ).

We write exp∗V for the map exp∗Kp,V
⊕ exp∗Kp̄,V

: Z1
Iw,p(V )→ Dp(V ), and similarly

LGV for the map LGp,V ⊕LGp̄,V : Z1
Iw,p(V )→ HF̂∞(G)⊗Dp(V ). Both of these induce

maps on the wedge square, which we denote by the same symbols.
The following conjecture can be seen as a special case of the very general “ζ-

isomorphism conjecture” of Fukaya and Kato (Conjecture 2.3.2 of [FK06]), applied
to the module ΛZp(G)⊗ T for T a Zp-lattice in V .
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Conjecture 6.16. Choose a basis v of Fil0 Dcris(Kp, V ) ⊗Qp Fil0 Dcris(Kp̄, V ) ⊆
Dp(V )(1,1). Then there is a distinguished element c ∈

∧2
H1

Iw,S(K∞, Vf ) such that
for all finite-order characters ω, we have

exp∗V (ω−1)∗(1)(cω) =
L(f/K, ω−1, 1)

Ω+
f Ω−f

v.

Moreover, c is a ΛZp(G)-basis of Iarith,p(V ).

We choose a basis vp,α, vp,β of ϕ-eigenvectors in Dcris(Kp, V ), and similarly for
Dcris(Kp̄, V ); and for a p-refinement u = (up, up̄), we let vu = vp,up

⊗ vp̄,up̄
∈

Dp(V )(1,1). We may normalise such that vp = vp,α+vp,β is a basis of Fil0 Dcris(Kp, V )

(and respectively for p̄); then v = vp ⊗ vp̄ is a basis of Fil0 Dp(V ).

Proposition 6.17. Let c ∈
∧2

H1
Iw,S(K∞, V ). Then for each p-refinement u (crit-

ical or otherwise), the projection of LGV (c) to the subspace E · vu ⊆ Dp(V )(1,1) is
a distribution of order (vp(up), vp(up̄)). If c satisfies the condition of Conjecture
6.16, then the projection of LGV (c) satisfies the interpolating property (9).

Proof. The values of LGV (c) at ω can be expressed in terms of those of the dual
exponential map using Proposition 4.15, which clearly gives the formula of (9).

The statement regarding the orders of the projections is an instance of Theorem
6.8. Concretely, suppose we choose elements c1, c2 such that c1 ∧ c2 = c. Then we
have

LGV (c) = (vp,αLV,p(c1)α + vp,βLV,p(c1)β + vp̄,αLV,p̄(c1)α + vp̄,βLV,p̄(c1)β)

∧ (vp,αLV,p(c2)α + vp,βLV,p(c2)β + vp̄,αLV,p̄(c2)α + vp̄,βLV,p̄(c2)β),

so the projection of LGV (c) to the line spanned by vu is

vu ·
∣∣∣∣LGV,p(c1)up

LGV,p(c2)up

LGV,p̄(c1)up̄
LGV,p̄(c2)up̄

∣∣∣∣ .
Since LGV,p(c?)up

(for ? ∈ {1, 2}) is a distribution of order (vp(up), 0), and LGV,p̄(c?)up̄

is a distribution of order (0, vp(up̄)), the determinant gives a distribution of order
(vp(up), vp(up̄) as claimed. �

In particular, when the refinement u is non-critical, we conclude that Conjecture
6.16 implies Conjecture 6.13 and the projection of LGV (c) to vu must be equal to
the uniquely determined distribution µf (u).

Remark 6.18. If Conjecture 6.16 holds, then one can also project the element LGV (c)

into Dp(V )(2,0) (or into Dp(V )(0,2)). The resulting distributions are of a rather
simpler type: if c = c1 ∧ c2 as before, then

pr2,0 LGV (c) = LGp,V (c1) ∧ LGp,V (c2).

This is a distribution on G with values in the 1-dimensional space Dp(V )(2,0) =
detQp Dcris(Kp, V ) of order (1, 0), divisible by the image in HF̂∞(G) of the distribu-

tion `0 ∈ HQp(Γp), so dividing by this factor gives a bounded measure on G with

values in F̂∞. Note that acting by the arithmetic Frobenius of F̂∞ on this measure
corresponds to multiplication by [σp]2, so it never descends to a finite extension of
Qp.
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It is natural to conjecture (and would follow from Conjecture 2.3.2 of [FK06])
that if τ is a character of G whose Hodge–Tate weights at p and p̄ are (r, s) with

r ≥ 1 and s ≤ −1, so Fil0
∧2 Dp(V (τ−1)) = Dp(V )(2,0), then the value of pr2,0 LGV (c)

at τ should (after dividing by an appropriate period) correspond to the value at 1 of
the L-function of the automorphic representation BC(πf )⊗τ of GL(2,AK). Up to a
shift by the cyclotomic character, this corresponds to the set of characters denoted
by Σ(2)(f) in [BDP13], while the finite-order characters covered by the interpolating
property in Conjecture 6.16 correspond to the set denoted there by Σ(1)(f).

If this conjecture holds, the image of pr2,0 LGV (c)/`0 in the Galois group of the
anticyclotomic Zp-extension of K should be related to the L-functions of [BDP13,
Proposition 6.10] and [Bra11], which interpolate the L-values of twists of f by
anticyclotomic characters in Σ(2)(f). We intend to study this question further in a
future paper.

Appendix A. Local and global Iwasawa cohomology

In this section, we shall recall some results on the structure of Iwasawa cohomol-
ogy groups of p-adic Galois representations over towers of representations of local
and global fields. These are generalizations of well-known results for cyclotomic
towers due to Perrin-Riou (cf. [PR92, §2]); much more general results have since
been obtained by Nekovar [Nek06] and we briefly indicate how to derive the results
we need from those of op.cit..

A.1. Conventions. We shall work with extensions of (local or global) fields F∞/F
whose Galois group is of the form G = ∆×Zep, where e ≥ 1 and ∆ is a finite abelian
group of order prime to p. The Iwasawa algebra ΛZp(G) is a reduced ring, but it
is not in general an integral domain; rather, it is isomorphic to the direct product
of the subrings eηΛZp(G), where η ranges over the Qp/Qp-conjugacy classes of
characters of ∆. For each such η, eηΛZp(G) is a local integral domain.

In order to greatly simplify the presentation of our results, we shall adopt a
minor abuse of notation, following the conventions of [PR95].

Definition A.1. We shall say that a ΛZp(G)-module has rank r if Mη has rank r
over eηΛZp(G) for all η.

When using this notation it is important to bear in mind that when ∆ is not
trivial, most finitely generated ΛZp(G) modules will not have a rank.

A.2. The local case. Let F be a finite extension of Q`, for some prime `. Let V
a Qp-representation of GF of dimension d, and choose a Galois invariant Zp-lattice
T . For F∞/F an abelian extension satisfying the conditions above, we define

Hi
Iw(F∞, T ) = lim←−

K

Hi(K,T )

where the limit is over all finite extensions K/F contained in F∞, with respect to
the corestriction maps; and Hi

Iw(F∞, V ) = Qp ⊗Zp H
i
Iw(F∞, T ).

Theorem A.2. The groups Hi
Iw(F∞, T ) are finitely-generated ΛZp(G)-modules,

zero if i 6= {0, 1}. We have an isomorphism

H2
Iw(F∞, T ) ∼= H0(F∞, T

∨(1))∨,

where (−)∨ denotes the Pontryagin dual; in particular H2
Iw(F∞, T ) is ΛZp(G)-

torsion.
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The group H1
Iw(F∞, T ) has well-defined rank given by

rkΛZp (G)H
1
Iw(F∞, T ) =

{
0 if ` 6= p,

[F : Qp]d if ` = p.

Proof. We have assumed that G has a subgroup isomorphic to Zep with e ≥ 1; thus

the profinite degree of F∞/F is divisible by p∞, so H0
Iw(F∞, T ) = 0 by [Nek06,

8.3.5 Proposition].
For the finiteness statements for i > 0, we note that

Hi
Iw(F∞, T ) ∼= Hi(F,ΛZp(G)⊗Zp T )

by [Nek06, 8.4.4.2 Proposition], where the action of GF on ΛZp(G) is via the inverse
of the canonical character GF → G→ ΛZp(G)×. This implies the finite generation

of the groups Hi
Iw(F∞, T ), and their vanishing for i ≥ 3, by Proposition 4.2.2 of

op.cit..
The isomorphism H2

Iw(F∞, T )∨ ∼= H0(F∞, T
∨(1)) follows by applying local Tate

duality to each finite extension K/F contained in F∞. Finally, the formula for the
rank of H1

Iw(F∞, T ) follows from Tate’s local Euler characteristic formula for finite
modules and Corollary 4.6.10 of op.cit.. �

A.3. The global case. We now letK be a number field. Let V be a Qp-representation
of GK of dimension d, and choose a GK-invariant Zp-lattice T . Let S be a finite set
of places of K containing all the primes above p, all infinite places and all the places
whose inertia group acts non-trivially on V , and let KS be the maximal extension
of K unramified outside S.

Theorem A.3 (Tate’s global Euler characteristic formula). If M is a Zp-module of
finite length with a continuous action of Gal(KS/K), then the modules Hi(KS/K,M)
are finite groups, zero for i ≥ 3. If K is totally complex, then we have

2∏
i=0

(
#Hi(KS/K,M)

)(−1)i

= (#M)−
1
2 [K:Q].

Proof. See [NSW00, 8.3.17, 8.6.14]. �

We now consider a Galois extension K∞/K, contained in KS , whose Galois
group G is of the form ∆× Zep, where e ≥ 1 and ∆ is abelian of order prime to p,
as above. For i ≥ 0, we define

Hi
Iw,S(K∞, T ) = lim←−

L

Hi(KS/L, T )

where the limit is taken over number fields L satisfying K ⊆ L ⊂ K∞, with respect
to the corestriction maps.

Theorem A.4. The groups Hi
Iw,S(K∞, T ) are finitely-generated ΛZp(G)-modules,

zero if i = 0 or i ≥ 3. If K is totally complex, then for each character η of ∆ we
have

rankeηΛZp (G) eηH
1
Iw,S(K∞, T ) = 1

2 [K : Q]d+ rankeηΛZp (G) eηH
2
Iw,S(K∞, T ).

Proof. This follows exactly as in Theorem A.2, using Tate’s global Euler character-
istic formula in place of the local one. (There are no issues with real embeddings,
thanks to our running assumption that p be odd.) �
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Proposition A.5. The following statements are equivalent:

(i) H2
Iw,S(K∞, T ) is ΛZp(G)-torsion.

(ii) For each character η of ∆, there is a character τ of G such that τ |∆ = η and
H2(KS/K, V (τ)) = 0.

(iii) H2(KS/K∞, T ⊗Qp/Zp) is a cotorsion ΛZp(G)-module.

(iv) H2(KS/K∞, T ⊗Qp/Zp) = 0.

Proof. Since ∆ has order prime to p, we may assume ∆ = 1, so G ∼= Zep and
Λ = ΛZp(G) is a local integral domain.

We first show (i) ⇔ (ii). By [Nek06, 8.4.8.2 Corollary, (ii)] we have an isomor-
phism

H2
Iw,S(K∞, T )⊗Λ Zp(τ) ∼= H2(KS/K, T (τ−1)).

If H2
Iw,S(K∞, T ) is torsion, then it is annihilated by some non-zero f ∈ Λ. Since

f 6= 0, there exists a character τ such that f(τ) 6= 0; but by the above formula
f(τ) annihilates H2(KS/K, T (τ−1)), so H2(KS/K, V (τ−1)) = 0. Conversely, if
H2(KS/K, V (τ−1)) = 0 for some τ , then H2(KS/K, T (τ−1)) is Zp-torsion, so by
a form of Nakayama’s lemma – see [BH97, Theorem 2] – we can conclude that
H2

Iw,S(K∞, T ) is a torsion Λ-module.

We now show (ii) ⇔ (iii). We know that H2(KS/K, T (τ) ⊗ Qp/Zp) is finite if
and only if H2(KS/K, V (τ)) = 0. From the Hochschild–Serre spectral sequence
and Poincaré duality for G-cohomology we have an isomorphism

H2(KS/K∞, T ⊗Qp/Zp)∨ ⊗Λ Zp(τ) ∼= H2(KS/K, T (τ)⊗Qp/Zp)∨

and we conclude by the same argument as before.
To finish the proof, it suffices to show that (iii) ⇒ (iv). We claim that the

module H2(KS/K∞, T ⊗ Qp/Zp) is co-free over Λ, i.e. its Pontryagin dual X =
H2(KS/K∞, T ⊗ Qp/Zp)∨ is a free Λ-module; thus if it is cotorsion, it must be
zero. For e = 1 this is a theorem of Greenberg, cf. [PR95, Proposition 1.3.2], so we
shall reduce to this case by induction on e.

Let us choose topological generators γ1, . . . , γe of Gal(K∞/K) ∼= Zep, and set
ui = [γi] − 1 ∈ Λ. Then Λ ∼= Zp[[u1, . . . , ue]] and in particular (p, u1, . . . , ue) is a
regular sequence for Λ; so in order to show that X is free, it suffices to show that
X[ue] = 0 and X/ueX is free as a module over Λ/ueΛ.

If we let U be the subgroup of G generated by γe, then

X[ue] = H1(U,H2(K∞, T ⊗Qp/Zp))∨,

and by the Hochschild–Serre exact sequence, H1(U,H2((K∞)U , T⊗Qp/Zp)) injects
into H3(KU

∞, T ⊗Qp/Zp), which is 0 (since p is odd); and we have

X/ueX = H2((K∞)U , T ⊗Qp/Zp)∨,

which (by the induction hypothesis) is free over Zp[[u1, . . . , ue−1]], so we are done.
�

To define our module of p-adic L-functions we will need to assume the following
conjecture, which corresponds to the “conjecture de Leopoldt faible” of [PR95,
§1.3]:

Conjecture A.6 (Conjecture Leop(K∞, V )). The equivalent conditions of Propo-
sition A.5 hold, for some (and hence every) Zp-lattice T in V .
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Note that if K∞, L∞ are two extensions of K satisfying our conditions, with
K∞ ⊆ L∞, and Gal(L∞/K∞) is torsion-free (hence isomorphic to a product of
copies of Zp), then conjecture Leop(K∞, V ) implies conjecture Leop(L∞, V ), since
Gal(K∞/K) and Gal(L∞/K) have the same torsion subgroup and thus condition
(ii) of Proposition A.5 for K∞ implies the corresponding condition for L∞. It is
conjectured that Leop(K(µp∞), V ) should hold for any V , and this is known in
many cases; see [PR95, Appendix B].

Example A.7. Let V be the 2-dimensional p-adic representation of GQ associated
to a modular form, K/Q an imaginary quadratic field, and K∞ the unique Z2

p-
extension of K. Then Leop(K∞, V ) holds.

To see this, we use the fact that Leop(K∞, V ) is implied by Leop(Kcyc, V ),
where Kcyc is the cyclotomic Zp-extension of K. However, by Shapiro’s lemma
the conjecture Leop(Kcyc, V ) is equivalent to Leop(Qcyc, V ⊕ V (εK)), where Qcyc

is the cyclotomic Zp-extension of Q and εK is the quadratic Dirichlet character
associated to K. The conjectures and Leop(Qcyc, V ) and Leop(Qcyc, V (εK)) follow
from [Kat04, Theorem 12.4] applied to f and its twist by εK .

Corollary A.8. If K is totally complex and Conjecture Leop(K∞, V ) holds, then
the module H1

Iw,S(K∞, T ) has well-defined ΛZp(G)-rank, equal to 1
2 [K : Q]d, where

d = rankZp T .

Appendix B. Explicit formulae for Perrin-Riou’s p-adic regulator

In this section, we give the proof of the formulae for the cyclotomic regulator
used in the proof of Proposition 4.15. As we work only over Qp here, we shall write
D(−) and N(−) for DQp(−) and NQp(−) respectively.

Let V be a good crystalline representation of GQp , and x ∈ H(Γ)⊗ΛZp (Γ)H
1
Iw(Qp,∞, V ).

We write xj for the image of x in H1
Iw(Qp,∞, V (−j)), and xj,n for the image of xj in

H1(Qp,n, V (−j)). If we identify x with its image in D(V )ψ=1, then xj corresponds
to the element x⊗ e−j ∈ D(V )ψ=1 ⊗ e−j = D(V (−j))ψ=1.

Since V has non-negative Hodge–Tate weights, we may interpret x as an element

of the module
(
B+

rig,Qp

[
1
t

]
⊗ Dcris(V )

)ψ=1

.

We shall assume:

(†) x ∈
(
B+

rig,Qp ⊗B+
Qp

N(V )

)ψ=1

⊆
(
B+

rig,Qp

[
1
t

]
⊗Qp Dcris(V )

)ψ=1

.

This condition is satisfied in the following two situations:

• if V has no quotient isomorphic to Qp, by [Ber03, Theorem A.3];
• or if x is in the image of the Iwasawa cohomology over F∞(µp∞), by The-

orem 4.4 above.

We will base our proofs on the work of Berger [Ber03], so we recall the notation
of that reference. Let ∂ denote the differential operator (1 + π) d

dπ on B+
rig,Qp . We

also use Berger’s notation ∂V ◦ ϕ−n for the map

B+
rig,Qp

[
1
t

]
⊗Qp Dcris(V ) - Qp,n ⊗Qp Dcris(V )

which sends πk ⊗ v to the constant coefficient of (ζn exp(t/pn) − 1)k ⊗ ϕ−n(v) ∈
Qp,n((t))⊗Qp Dcris(V ).
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For m ∈ Z, define Γ∗(m) to be the leading term of the Taylor series expansion
of Γ(x) at x = m (cf. [FK06, §3.3.6]); thus

Γ∗(1 + j) =

{
j! if j ≥ 0,
(−1)−j−1

(−j−1)! if j ≤ −1.
.

Proposition B.1. For x satisfying (†), let us define

Rj,n(x) =
1

Γ∗(1 + j)
×

{
p−n∂V (−j)(ϕ

−n(∂jx⊗ tje−j)) if n ≥ 1,

(1− p−1ϕ−1)∂V (−j)(∂
jx⊗ tje−j) if n = 0.

Then we have

Rj,n(x) =

{
exp∗Qp,n,V (−j)∗(1)(xj,n) for j ≥ 0,

logQp,n,V (−j)(xj,n) for j ≤ −1.

Proof. This result is essentially a minor variation on [Ber03, Theorem II.10]. The
case j ≥ 0 is immediate from Theorem II.6 of op.cit. applied with V replaced by
V (−j) and x by x⊗ e−j , using the formula

∂V (−j)(ϕ
−n(x⊗ e−j)) =

1

j!
∂V (−j)(ϕ

−n(∂jx⊗ tje−j)).

For the formula when j ≤ −1, we choose an auxilliary integer h ≥ 1 such that

Fil−h Dcris(V ) = Dcris(V ). The element ∂jx⊗tje−j lies in
(
B+

rig,Qp ⊗Qp Dcris(V (−j))
)ψ=1

,

by (†). Applying Theorem II.3 of op.cit. with V , h and x replaced by V (−j), h− j,
and ∂jx⊗ t−jej , we see that

Γ∗(j + 1)Rj,n(x) = Γ∗(j − h+ 1) logQp,n,V (−j)

[
(`0 . . . `h−1x)j,n

]
.

For x ∈ H(Γ)⊗ΛZp (Γ) H
1
Iw(Qp,∞, V ), we have

(`rx)j,n = (j − r)xj,n,

so (since j ≤ −1) we have

(`0 . . . `h−1x)j,n = (j)(j − 1) . . . (j − h+ 1)xj,n =
Γ∗(j + 1)

Γ∗(j − h+ 1)
xj,n

as required. �

Proposition B.2. If x is as above, and LΓ
V (x) is the unique element of H(Γ)⊗Qp

Dcris(V ) such that LΓ
V (x) · (1 + π) = (1− ϕ)x, then for any j ∈ Z we have

(1− ϕ) · ∂V (−j)(ϕ
−n(∂jx⊗ tje−j)) = LΓ(x)(χj)⊗ tje−j ,

while for any finite-order character ω of Γ of conductor n ≥ 1, we have ∑
σ∈Γ/Γn

ω(σ)−1σ

 · ∂V (−j)(ϕ
−n(∂jx⊗ tje−j))

= τ(ω)ϕ−n
(
LΓ(x)(χjω)⊗ tje−j

)
.
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Proof. We note that

LΓ
V (−j)(∂

jx⊗ tje−j) = Twj(LΓ
V (x))⊗ tje−j ,

so it suffices to prove the result for j = 0. Suppose we have

x =
∑
k≥0

vkπ
k, vk ∈ Dcris(V ).

Then
∂V (ϕ−n(x)) =

∑
k≥0

ϕ−n(vk) (ζpn − 1)
k
.

On the other hand

∂V (ϕ−n((1− ϕ)x)) =
∑
k≥0

ϕ−n(vk) (ζpn − 1)
k −

∑
k≥0

ϕ1−n(vk)
(
ζpn−1 − 1

)k
.

Applying the operator eω =
∑
σ∈Γ/Γn

ω(σ)−1σ, we have for n ≥ 1

eω · ∂V (ϕ−n(x)) = eω · ∂V (ϕ−n((1− ϕ)x)),

since eω is zero on Qp,n−1((t)).
However, since the map ∂V ◦ ϕ−n is a homomorphism of Γ-modules, we have

eω · ∂V (ϕ−n((1− ϕ)x)) = eω · ∂V (LΓ(x) · (1 + π))

= ϕ−n(LΓ(x)) · eω∂Qp(ϕ−n(1 + π))

= τ(ω)ϕ−n
(
LΓ(x)(ω)

)
.

This completes the proof of the proposition for j = 0. �

Definition B.3. Let x ∈ H1
Iw(Qp,∞, V ). If η is any continuous character of Γ,

denote by xη the image of x in H1
Iw(Qp,∞, V (η−1)). If n ≥ 0, denote by xη,n the

image of xη in H1(Qp,n, V (η−1)).

Thus xχj ,n = xj,n. in the previous notation. The next lemma is valid for
arbitrary de Rham representations of GQp (with no restriction on the Hodge–Tate
weights):

Lemma B.4. For any finite-order character ω factoring through Γ/Γn, with values
in a finite extension E/Qp, we have∑

σ∈Γ/Γn

ω(σ)−1 exp∗Qp,n,V ∗(1)(x0,n)σ = exp∗Qp,V (ω−1)∗(1)(xω,0)

and ∑
σ∈Γ/Γn

ω(σ)−1 logQp,n,V (x0,n)σ = logQp,V (ω−1)(xω,0)

where we make the identification

DdR(V (ω−1)) ∼=
(
E ⊗Qp Qp,n ⊗Qp Dcris(V )

)Γ=ω
.

Proof. This follows from the compatibility of the maps exp∗ and log with the core-
striction maps (cf [Ber03, §§II.2 & II.3]). �

Combining the three results above, we obtain:

Theorem B.5. Let j ∈ Z and let x satisfy (†). Let η be a continuous character of
Γ of the form χjω, where ω is a finite-order character of conductor n.
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(a) If j ≥ 0, we have

LΓ
V (x)(η) = j!×(1− pjϕ)(1− p−1−jϕ−1)−1

(
exp∗Qp,V (η−1)∗(1)(xη,0)⊗ t−jej

)
if n = 0,

τ(ω)−1pn(1+j)ϕn
(

exp∗Qp,V (η−1)∗(1)(xη,0)⊗ t−jej
)

if n ≥ 1.

(b) If j ≤ −1, we have

LΓ
V (x)(η) =

(−1)−j−1

(−j − 1)!
×(1− pjϕ)(1− p−1−jϕ−1)−1

(
logQp,V (η−1)(xη,0)⊗ t−jej

)
if n = 0,

τ(ω)−1pn(1+j)ϕn
(

logQp,V (η−1)(xη,0)⊗ t−jej
)

if n ≥ 1.

(In both cases, we assume that (1− p−1−jϕ−1) is invertible on Dcris(V ) when η =
χj.)

From this theorem it is straightforward to deduce a version of Perrin-Riou’s
explicit reciprocity formula, relating the regulator for V and for V ∗(1). We recall
from 2.6 the definition of the Perrin-Riou pairing

〈−,−〉Qp,∞ : H1
Iw(Qp,∞, V )×H1

Iw(Qp,∞, V ∗(1))→ ΛQp(Γ).

Let h be sufficiently large that V ∗(1 + h) has Hodge–Tate weights ≥ 0. Recall
that we write y−h for the image of y in H1

Iw(Qp,n, V ∗(1 + h)). Define LΓ
V ∗(1) by

(10) LΓ
V ∗(1)(y) = (`−1`−2 · `−h)−1 Tw−h

(
LV ∗(1+h)(y−h)

)
⊗ the−h

∈ FracHQp(Γ)⊗ Dcris(V
∗(1));

note that this definition is independent of the choice of h � 0. Write 〈·, ·〉cris,V

for the natural pairing Dcris(V ) × Dcris(V
∗(1)) → Dcris(Qp(1)) ∼= Qp. We extend

the crystalline pairing ΛZp(Γ)-linearly in the first argument and antilinearly in the
second argument.

Theorem B.6. For all x ∈ H1
Iw(Qp,∞, V ) and y ∈ H1

Iw(Qp,∞, V ∗(1)), we have〈
LV (x),LV ∗(1)(y)

〉
cris,V

= −σ−1 · `0 · 〈x, y〉Qp,∞,V ,

where σ−1 is the unique element of Γ such that χ(σ−1) = −1.

Proof. By Theorem B.5 (a), for j ≥ 1 + h we have

LV (x)(χj) = j!(1− pjϕ)(1− p−1−jϕ−1)−1
(

exp∗0,V ∗(1+j)(xj,0)⊗ t−jej
)

and

LV ∗(1+h)(y−h)(χh−j)⊗ the−h =
(−1)j−h−1

(j − h− 1)!
×

(1− p−jϕ)(1− pj−1ϕ−1)−1
(

logQp,V ∗(1+j)(y−j,0)⊗ tje−j
)
.
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Hence we have〈
LV (x)(χj),LV ∗(1+h)(y−h)(χh−j)⊗ the−h

〉
cris,V

=
(−1)h−j−1j!

(j − h− 1)!
〈exp∗0,V ∗(1+j)(xj,0), logQp,V ∗(1+j)(y−j,0)〉cris,V (−j)

=
(−1)h−j−1j!

(j − h− 1)!
〈xj,0, y−j,0〉Qp,V (−j)

= (−1)h+1
[
σ−1 · (`0 . . . `h) · 〈x, y〉Qp,∞,V

]
(χj).

Using the definition of LΓ
V ∗(1) as in (10), this relation takes the more pleasing

form 〈
LV (x),LV ∗(1)(y)

〉
cris,V

= −σ−1 · `0 · 〈x, y〉Qp,∞,V .

�

Appendix C. Functions of two p-adic variables

Let p be a prime. We let L be a complete discretely valued subfield of Cp, and let
vp denote the p-adic valuation on L, normalised in the usual fashion, so vp(p) = 1.

C.1. Functions and distributions of one variable. We recall the theory in the
one-variable case, as presented in [Cz10]. Let h ∈ R, h ≥ 0.

Let f be a function Zp → L. We say f has order h if, informally, it may be
approximated by a Taylor series of degree [h] at every point with an error term of
order h. More precisely, f has order h if there exist functions f (j), 0 ≤ j ≤ [h], such
that the quantity

εf (x, y) = f(x+ y)−
[h]∑
j=0

f (j)(x)yj

j!
,

satisfies

sup
x∈Zp,y∈pnZp

vp (εf (x, y))− hn→∞

as n→∞. (It is clear that this determines the functions f (0), . . . , f (j) uniquely.)
We write Ch(Zp, L) for the space of such functions, with a Banach space structure

given by the valuation

vCh(f) = inf

(
inf

0≤j≤[h],x∈Zp
vp(f

(j)(x)), inf
x,y∈Zp

vp(εf (x, y))− hvp(y)

)
.

We define the space Dh(Zp, L) of distributions of order h to be the continuous dual
of Ch(Zp, L).

Then we have the following celebrated theorem, due to Mahler [Mah58] for h = 0
and to Amice [Ami64] for h > 0:

(1) The space Ch(Zp, L) has a Banach space basis given by the functions

x 7→ p[h`(n)]

(
x

n

)
for n ≥ 0, where `(n) is, as in §1.3.1 of [Cz10], the smallest integer m such
that pm > n.
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(2) The space LPN (Zp, L) of L-valued locally polynomial functions of degree
N is dense in Ch(Zp, L) for any N ≥ [h], and a linear functional

µ : LPN (Zp, L)→ L

extends continuously to a distribution of order h if and only there is a
constant C such that we have

vp

(∫
x∈a+pnZp

(
x− a
pn

)k
dµ

)
≥ C − hn

for all a ∈ Zp, n ∈ N and 0 ≤ k ≤ N .

A modern account of this theorem is given in [Cz10, §§1.3, 1.5].

C.2. The two-variable case. We now consider functions of two variables. For
a, b ≥ 0, we define the space

C(a,b)(Z2
p, L) := Ca(Zp, L) ⊗̂L Cb(Zp, L),

with its natural completed tensor product topology. We regard this as a space of
functions on Z2

p in the obvious way, and refer to these as the L-valued functions on

Z2
p of order (a, b). It is clear that C(0,0)(Z2

p, L) is simply the space of continuous

L-valued functions on Z2
p, and that if a′ ≥ a and b′ ≥ b, then C(a′,b′)(Z2

p, L) is dense

in C(a,b)(Z2
p, L). Moreover, for any (a, b) the space LA(Z2

p, L) of locally analytic

functions on Z2
p is a dense subspace of C(a,b)(Z2

p, L).
Note that any choice of Banach space bases for the two factors in the tensor

product gives a Banach space basis for C(a,b)(Z2
p, L). In particular, from (1) above

we have a Banach basis given by the functions

cn1,n2
: (x1, x2) 7→ p[a`(n1)]+[b`(n2)]

(
x1

n1

)(
x2

n2

)
.

The following technical proposition will be useful to us in the main text:

Proposition C.1. For any h ≥ 0, the space C(0,h)(Z2
p, L) is invariant under pull-

back via the map Φ : (x, y)→ (x, ax+ y), for any a ∈ Zp.

Proof. It suffices to show that Φ∗(cn1,n2
) can be written as a convergent series in

terms of the functions cm1,m2
with uniformly bounded coefficients. We find that

Φ∗(cn1,n2
)(x1, x2) = p[h`(n2)]

(
x1

n1

)(
ax1 + x2

n2

)
=

n1∑
i=0

p[h`(n2)]

(
x1

n1

)(
ax1

n2 − i

)(
x2

i

)
.

The functions x1 7→
(
x1

n1

)(
ax1

n2−i
)

are continuous Zp-valued functions on Zp, and hence

the coefficients of their Mahler expansions are integral; and since the function `(n)
is increasing, we see that the coefficients of Φ∗(cn1,n2

) in this basis are in fact
bounded by 1. �

Dually, we define a distribution of order (a, b) to be an element of the dual of
C(a,b)(Z2

p, L); the space D(a,b)(Z2
p, L) of such distributions is canonically isomorphic

to the completed tensor product Da(Zp, L) ⊗̂L Db(Zp, L).

An analogue of (2) above is also true for these spaces. Let us write LP (N1,N2)(Z2
p, L)

for the space of functions on Z2
p which are locally polynomial of degree ≤ N1 in x1
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and of degree ≤ N2 in x2; that is, the algebraic tensor product LPN1(Zp, L) ⊗L
LPN2(Zp, L).

Proposition C.2. Suppose N1 ≥ [a] and N2 ≥ [b]. Then the subspace LP (N1,N2)(Z2
p, L)

is dense in C(a,b)(Z2
p, L), and a linear functional on LP (N1,N2)(Z2

p, L) extends to

an element of D(a,b)(Zp, L) if and only if there is a constant C such that

(11) vp

(∫
(x1,x2)∈(a1+pn1Zp)×(a2+pn2Zp)

(
x1 − a1

pn1

)k1
(
x2 − a2

pn2

)k2

dµ

)
≥ C − an1 − bn2

for all (a1, a2) ∈ Z2
p, (n1, n2) ∈ N2, 0 ≤ k1 ≤ N1 and 0 ≤ k2 ≤ N2.

The proof of this result is virtually identical to the 1-variable case, so we shall
not give the full details here.

In particular, if a, b < 1, we may take N1 = N2 = 0, and a distribution of order
(a, b) is uniquely determined by its values on locally constant functions, or equiv-
alently, by its values on the indicator functions of open subsets of Z2

p. Conversely,

a finitely-additive function µ on open subsets of Z2
p defines a distribution of order

(a, b) if and only if there is C such that

vpµ ((a1 + pn1Zp)× (a2 + pn2Zp)) ≥ C − an1 − bn2.

The following is easily verified:

Proposition C.3. The convolution of distributions of order (a, b) and (a′, b′) has
order (a+ a′, b+ b′).

It is important to note that the spaces of functions and of distributions of order
(a, b) depend on a choice of coordinates; they are not invariant under automor-
phisms of Z2

p, even if a = b. However, dualising Proposition C.1 above, the space
of distributions of order (0, h) is invariant under automorphisms preserving the
subgroup (0,Zp).

Remark C.4. One can also define a function f : Z2
p → L to be of order h, for a

single non-negative real h, if f has a Taylor expansion of degree [h] at every point,
with the error term ε(x, y) (defined as above) satisfying

inf
x∈Z2

p,y∈pnZ2
p

vpε(x, y)− hn→∞.

This definition is invariant under automorphisms of Zp (and indeed under arbitrary
morphisms of locally Qp-analytic manifolds). However it is not so convenient for
us, since locally constant functions are only dense for h < 1, and a finitely-additive
function on open subsets extends to a linear functional on this space if we can find
a C such that

(12) vpµ
(
a+ pnZ2

p

)
≥ C − nh.

The requirement that this be satisfied, for some h < 1, is much stronger than the
requirement that (11) is satisfied for some a, b < 1.

We shall also use the concept of distributions of order (a, b) on a slightly larger
class of group: if we have an abelian p-adic Lie group G, and an open subgroup H
with distinguished subgroups H1, H2 such that H = H1 ×H2 and H1

∼= H2
∼= Zp,

then we may define a distribution on G to have order (a, b) if its restriction to every



IWASAWA THEORY AND P-ADIC L-FUNCTIONS OVER Z2
p-EXTENSIONS 43

coset of H has order (a, b) in the above sense. Note that this does not depend on
a choice of generators of the groups Hi, but it does depend on the choice of the
subgroups H1, H2; so when there is a possibility of ambiguity we shall write “order
(a, b) with respect to the subgroups H1, H2”.

Note that an application of Proposition C.1 shows that a distribution has order
(0, h) with respect to the subgroups (H1, H2) if and only if it has order (0, h) with
respect to (H ′1, H2) for any other subgroup H ′1 complementary to H2; that is, in
this special case the definition of “order (0, h)” depends only on the choice of H2.
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iment. Math. 12 (2003), no. 2, 155–186. MR 2016704.
[Pic10] Erik Jarl Pickett, Construction of self-dual integral normal bases in abelian extensions

of finite and local fields, Int. J. Number Theory 6 (2010), no. 7, 1565–1588. MR

2740722.
[ST02] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory,

Israel J. Math. 127 (2002), 359–380. MR 1900706.

[Sem88] I. A. Semaev, Construction of polynomials, irreducible over a finite field, with linearly
independent roots, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 520–532, 560. MR 942137.

[Wac96] Nathalie Wach, Représentations p-adiques potentiellement cristallines, Bull. Soc.

Math. France 124 (1996), no. 3, 375–400. MR 1415732.
[Yag82] Rodney Yager, On two variable p-adic L-functions, Ann. of Math. (2) 115 (1982),

no. 2, 411–449. MR 0647813.

Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL,
United Kingdom

E-mail address: d.a.loeffler@warwick.ac.uk

Mathematics Department, University College London, Gower Street, London WC1E
6BT, United Kingdom

E-mail address: s.zerbes@ucl.ac.uk

http://dx.doi.org/10.1112/jlms/s2-38.1.1
http://dx.doi.org/10.1112/jlms/s2-38.1.1
http://www.ams.org/mathscinet-getitem?mr=949078
http://dx.doi.org/10.1007/BF01232022
http://www.ams.org/mathscinet-getitem?mr=1168369
http://dx.doi.org/10.1007/BF01231755
http://www.ams.org/mathscinet-getitem?mr=1248080
http://smf4.emath.fr/Publications/Asterisque/1995/229/html/smf_ast_229.html
http://www.ams.org/mathscinet-getitem?mr=1327803
http://projecteuclid.org/euclid.em/1067634729
http://www.ams.org/mathscinet-getitem?mr=2016704
http://dx.doi.org/10.1142/S1793042110003654
http://dx.doi.org/10.1142/S1793042110003654
http://www.ams.org/mathscinet-getitem?mr=2740722
http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1007/BF02784538
http://www.ams.org/mathscinet-getitem?mr=1900706
http://www.ams.org/mathscinet-getitem?mr=942137
http://www.ams.org/mathscinet-getitem?mr=1415732
http://dx.doi.org/10.2307/1971398
http://www.ams.org/mathscinet-getitem?mr=0647813

	1. Introduction
	2. Setup and notation
	2.1. Fields and their extensions
	2.2. Iwasawa algebras and power series
	2.3. Fontaine rings
	2.4. Crystalline and de Rham representations
	2.5. (,)-modules and Wach modules
	2.6. Iwasawa cohomology and the Perrin-Riou pairing
	2.7. The Fontaine isomorphism
	2.8. Gauss sums, L- and epsilon-factors

	3. Local theory: Yager modules and Wach modules
	3.1. Some cohomological preliminaries
	3.2. The Yager module
	3.3. P-adic representations
	3.4. Recovering unramified twists

	4. The 2-variable p-adic regulator
	4.1. A lemma on universal norms
	4.2. The regulator map
	4.3. An explicit formula for the values of the regulator
	4.4. A local reciprocity formula

	5. Regulators for extensions of number fields
	5.1. Semilocal cohomology
	5.2. The module of p-adic L-functions

	6. Imaginary quadratic fields
	6.1. Setup
	6.2. Galois descent of the module of L-functions
	6.3. Orders of distributions
	6.4. Example 1: Grössencharacters and Katz's L-function
	6.5. Example 2: Two-variable L-functions of modular forms

	Appendix A. Local and global Iwasawa cohomology
	A.1. Conventions
	A.2. The local case
	A.3. The global case

	Appendix B. Explicit formulae for Perrin-Riou's p-adic regulator
	Appendix C. Functions of two p-adic variables
	C.1. Functions and distributions of one variable
	C.2. The two-variable case

	Acknowledgements
	References

