119 research outputs found

    Self-calibration technique for on-machine spindle-mounted vision systems

    Get PDF
    On-machine measuring (OMM) systems are being more and more applied in machine tools in order to measure workpieces on the machine itself. Many of these systems are directly mounted in the machine spindle, so the measuring uncertainty is affected by clamping positioning and orientation variations, especially when integrating optical systems based on machine vision. This paper presents a self-calibration technique for vision systems by using redundant information of on machine measurements, avoiding extra mechanical anchoring or calibration means. It has been applied to a vision system with the angular placement uncertainty of a tool holder coupling being the main uncertainty contributor. A milling machine pilot case has been selected for demonstration, showing an effective self-calibration capability both in laboratory and industrial conditions

    Extreme Environment Interconnects and Packaging for Power Electronics

    Get PDF

    Extreme Environment Interconnects and Packaging for Power Electronics

    Get PDF

    What Lies beyond the Pareto Front? A Survey on Decision-Support Methods for Multi-Objective Optimization

    Full text link
    We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields. We provide an overview of the advances on this topic, including methods for visualization, mining the solution set, and uncertainty exploration as well as emerging research directions, including interactivity, explainability, and ethics. We synthesize these methods drawing from different fields of research to build a unified approach, independent of the application. Our goals are to reduce the entry barrier for researchers and practitioners on using MOO algorithms and to provide novel research directions.Comment: IJCAI 2023 Conference Paper, Survey Trac

    The elliptic model for communication fluxes

    Get PDF
    In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility

    Digitally-Driven Hybrid Manufacture of Ceramic Thick-Film Substrates

    Get PDF
    Ceramic substrates are commonly used in the electronics industry across a range of applications such as automotive, aerospace, industrial monitoring, power electronics and electromagnetic devices due to their ability to withstand high temperatures, pressures, radiation and mechanical shock. This paper will present the development of a new digitally-driven hybrid manufacturing process which overcomes many of the current limitations of stand-alone Additive Manufacturing for the production of precision engineered ceramic substrates and packages. This is achieved by interleaving ceramic paste extrusion with sacrificial support printing and micro-machining to produce a three-dimensional ceramic green-state part. A number of substrates were fabricated using a high viscosity, non-Newtonian paste consisting of 96wt% alumina. Thermally processing the substrate at temperatures in excess of 1400 °C yields a monolithic ceramic substrate with resultant shrinkages of ∼18% and part densities of ∼99.8%. The 3D ceramic part is then processed using computer-controlled equipment to selectively dispense a conformal circuit using silver thick film conductor paste, followed by solder dispensing and pick and place surface mount assembly of components. This fully digitally driven approach enables new design freedoms and customization currently not possible with conventional template driven manufacturing methods of ceramic electronic packages

    Extreme environment interconnects and packaging for power electronics

    Get PDF
    This paper presents the combination of an innovative assembly and packaging process utilising solid liquid inter diffusion (SLID) Cu-Sn interconnects within bespoke ceramic substrates that have been produced using additive manufacturing (AM). The resultant process chain supports the integration and packaging of power electronics for harsh environment applications. Here, the authors explore how the bond strength and composition of Cu-Sn SLID interconnects vary during exposure to thermal-mechanical load profiles. Samples of Cu-Sn are exposed to thermal loading up to 300°C and integrated mechanical loading via high random frequency vibrations (1 and 2000 Hz). In parallel, micro-extrusion printing methods in which high-viscosity ceramic pastes are dispensed through cylindrical fine nozzles (2–250 µm) using CNC-controlled motion has enabled complex 3D geometries to be fabricated. Additional secondary conductor deposition after firing the ceramic substrate enables the electronic circuitry to be generated without dedicated tooling, masks, or templates. This work presents the first fully 3D-printed ceramic-based electronic substrates. To demonstrate the applications of this printing method, a 555 timer circuit with flashing LED has been printed and the components surface mount assembled. The resultant ceramic substrates are dense, mechanically robust, and the reflowed circuit functions exactly as intended

    On the stability of high-speed milling with spindle speed variation

    Get PDF
    Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining
    • …
    corecore