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Abstract. In this paper, a model (called the elliptic model) is proposed to 
estimate the number of social ties between two locations using population data in 
a similar manner to how transportation research deals with trips. To overcome the 
asymmetry of transportation models, the new model considers that the number 
of relationships between two locations is inversely proportional to the population 
in the ellipse whose foci are in these two locations. The elliptic model is evaluated 
by considering the anonymous communications patterns of 25 million users from 
three different countries, where a location has been assigned to each user based 
on their most used phone tower or billing zip code. With this information, 
spatial social networks are built at three levels of resolution: tower, city and 
region for each of the three countries. The elliptic model achieves a similar 
performance when predicting communication fluxes as transportation models do 
when predicting trips. This shows that human relationships are influenced at least 
as much by geography as is human mobility. 

Keywords: network dynamics, scaling in socio-economic systems, socio-economic 
networks, traffic and crowd dynamics 
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1. Introduction 

Although social networks have been known for years to play a key role in various 
human phenomena [1, 2], for decades their study has been limited to certain kinds of 
social relationships for which interaction records were available, such as authorship and 
cooperation in science [3,4]. Only recently has it been possible to map large social networks 
representing a broader range of interactions in order to explore how their structures 
influence processes occurring in these networks. The required large social network data 
sets, usually coming from telecommunication records originating in e-mail [5], phone [6] 
or online communication platforms [7], have been used to explore a wide range of topics, 
such as adoption of innovation [8], social groups discovery [9]—[11], epidemic spreading 
[12]—[14], social mobilization [15] or sentiment spreading [16]. 

Despite the publication of such studies, network data is not widely available to the 
community due to legal, privacy or commercial issues. In addition, even with access to 
the electronic records, extracting a meaningful social network may be difficult at a large 
scale [6]. For these reasons, creating models that are able to mimic different social network 
properties have recently attracted a fair amount of research interest [17]—[21]. While most 
models try to generate synthetic networks with some desired characteristics (such as degree 
distribution and clustering coefficients), we will focus here on reproducing a macroscopic 
feature of real social networks: the number of social ties between different locations, i.e. 
how many relationships exist between two cities, two regions or even two neighborhoods. 
Throughout the paper, we will employ the term location to generically denote any of these 
three spatial aggregation levels. The creation of social connectivity maps between locations 
from widely accessible data, such as the population geographic distribution (which is 
universally accessible for almost any region of the world through tools such as Landscan), 
will prove useful for the study of information [22] or behavior spreading in social as well 
as other networks [2 3]. 



1.1. The effect of geography on social networks 

Towards the end of the 19th century and the beginning of the 20th century, a considerable 
amount of effort was dedicated to the development of telecommunication systems. Such 
systems, whether they carried written messages (telegraph) or voice (telephone), were 
designed to achieve a single goal: allowing people to communicate with those who are far 
away (indeed the Greek prefix tele- means distant). Interestingly (and contrary to some 
predictions from the beginning of the Internet era [4]) recent analyses of records from 
such systems show that people do not commonly use them to talk to those far away, but 
rather with people who are actually close by. In fact, it has been consistently found across 
records from emails, phones and blogs that the probability of a communication occurring 
between two people who are r kilometers apart from each other follows a decay function, 
typically a power law [24]-[27]. 

Although the communication fluxes between regions have not been the focus of 
much research yet, the above-mentioned new evidence shows that communication fluxes 
behave in a similar way to trip fluxes and other phenomena driven by the distribution of 
population across the geographical space. In transportation research, flux prediction is a 
well-defined problem: given a set of locations {i,j,...} whose coordinates and populations 
{riijUj,...} are known, the goal is inferring the flux matrix T, where each element T^ 
represents the number of trips from location i to location j . The problem was traditionally 
approached using gravity models [28]-[30], which try to gather the effect of decaying 
probability with distance r¿j following the equation 

where a and /5 are fitting parameters usually estimated from training data, and /(r^-) 
increases with distance, typically following an exponential or power-law function. A 
powerful idea was introduced recently by the radiation model [31], which claims that 
it is not the distance that matters, but the number of opportunities between i and j , 
which can be estimated by the population in the area. In short, the authors explain that 
someone from rural Iowa is more likely to travel further to satisfy their needs than someone 
in New York City, given the latter has a handful of options within a few blocks. While in 
its original publication the radiation model included testing against a phone call dataset 
(see figure 3 in [31]), the problem of predicting communication fluxes has not been the 
main focus of any model to date. In this paper we will present a new model inspired 
by this radiation model which is able to predict communication fluxes surprisingly well. 
Actually, the accuracy is similar to that reached by current transportation models when 
predicting trips. 

2. Model description 

Formally, the radiation model, when applied to social relationships, estimates the 
communication flux Ti:?- between two locations i and j using the population in both 



locations, and the population within the circle whose center is i and whose radius is 
equal to the distance between i and j . Its formulation is 

rrirad _ ry- TljUj 

hJ % (rii + Si^j)(ni + rij + s^j) 

where n¿ represents the population of location i, Si^j the number of people who are not 
in i but closer to i than j and the normalization Ki = Ui(NT/N), where NT is the total 
number of relationships to predict (which in general is considered to be available) and 
N = J2i ni the total population. 

It is straightforward to verify that T r a d matrices are not symmetric in general. While 
asymmetry is a desirable feature for mobility models (commuting origin-destination 
matrices have strongly asymmetric suburbs-downtown fluxes) it is not when dealing with 
communication fluxes, because the number of relationships people from location i have 
with people from location j must be the same as the number of relationships people from 
j have with people from i. 

A natural modification of the radiation model to deal with communication fluxes 
could be a simple symmetrization of the model, which we will denote radBI and whose 
formulation is 

rpY&dRI 1 (rpY&d i a ^ r a d \ 
ij ~ 2\1ij ~l~ ji >• 

As shown below, this model has a limited performance. This fact motivated us to 
develop the new model presented in this paper. Our model, which we will refer to as 
the elliptic model (EM), is oriented to deal with social relationships. The EM considers 
that the probability of someone living at location i having an acquaintance at location j 
is inversely proportional to the population of the area where both could meet, provided 
their combined travel distance does not exceed a certain threshold. This area forms an 
ellipse whose foci are in locations i and j . Among all possible ellipses the model selects the 
smallest one containing the two r\j radius circles whose centers are in i and j respectively 
(see figure 1 for a graphical explanation and comparison to the radiation model). Thus, 
the EM formulation is 

rpellip _ j7-ninj 
ij 

where e^ is the population within the ellipse depicted in figure 1 (note that e^ includes 
rii and rij) and K is a normalization parameter obtained from the total number of 
relationships to predict iVT (J2i ^ ; T*-ip = NT). Since e^ = e^ T* ip = T* ip and thus 
our model produces symmetrical matrices T. 

In order to compare the quantities involved in the model, one needs to consider the 
sets Oí yj anci OJ ¿̂, sucn as ^fpo^ yj ^ s^ yj and #Sj^i = Sj^i. Let us address the case of a 
very large city C C S^j whose population ríe ~ &%j- While the radiation model predicts 
different fluxes depending on whether C C (S^j C\ Sj^i) or not (smaller when C belongs 
to the intersection) the EM will provide the same prediction for both cases. In fact, since 
£ij ^ JtiSi^-j U Sj^-i) + ni + nj ( a n d usually e¿j ~ #(Si^j U Sj^i) + n¿ + rij) the role of 
the union set is the main contribution of the model. 



' l - í - J Figure 1. Model scenario: n¿ represents the population of location i while s¿ 
represents the population within the circle with its center in i with a radius up to 
j . As long as the population is not homogeneously distributed SÍ-^J / Sj-j-i, the 
radiation model predictions will not be symmetrical. e¿j represents the population 
within the smallest ellipse whose foci are in i and j and contains both previous 
circles, as well as n,- and n-¡. 

Table 1. Characteristic properties of the social networks in the countries studied: 
number of users (nodes) and relationships (links), average degree (k), average 
clustering coefficient (c) and relative sample size of the users in the data set. 

Country 

France 
Portugal 
Spain 

Users U 

18.7 x 106 

1.21 x 106 

5.92 x 106 

Links E 

81.3 x 106 

4.00 x 106 

16.1 x 106 

(k) 

8.73 
6.57 
5.44 

(c) 

0.16 
0.26 
0.21 

Total population (%) 

30.21 
11.21 
13.45 

3. Data description 

To evaluate the performance of the EM, we compare it with a mobile phone data set 
containing call detail records (CDRs) of a six-month period in three different countries: 
Prance, Portugal and Spain. In total, over seven billion calls are considered to build the 
social graph for each country, whose links are included only if there is at least one call in 
both directions during the observation period. The result is an undirected graph (this is 
a common technique in the literature to avoid both marketing callers and misdialed calls 
[6]). In table 1, some characteristics of the networks are presented, such as high clustering 
and relatively low average degree, which are expected from previous literature concerning 
mobile phone networks. 



Table 2. Number of locations considered in different geographic aggregation levels 
for each country. At the finer level, mobile phone towers are available for France 
and Portugal, and zip codes for Spain. Aggregation is based on administrative 
boundaries: cities are cantons in France, concelhos in Portugal and municipios 
in Spain, while regions means départements in France, andprovincias in Portugal 
and Spain. 

Country 

France 
Portugal 
Spain 

Towers/zip codes Cities 

17 475 3520 
2 209 297 
8 928 5446 

Regions 

96 
20 
52 

In addition to the communication records, our data include a location for each user: the 
most used mobile phone tower in France and Portugal and the billing zip code in Spain. In 
order to benchmark the multi-scale performance of the EM, three aggregation levels have 
been used: country-wide fluxes, fluxes between cities and regions, and metropolitan fluxes 
within cities. Table 2 presents the number of locations considered in each aggregation 
level. When applying these spatial aggregations, the center of mass of the population is 
used as the higher level location, instead of the centroid of the region polygon (defined 
by administrative boundaries), in order to avoid undesirable effects in the fairly common 
case of a big city located in a corner of a polygon. 

4. Communication fluxes on a country scale 

To validate the predictions of the EM at large scale, we consider connectivity matrices T 
at two aggregation levels. At the region level, matrix T has thousands of elements while 
at the city level there are tens of millions of fluxes to predict (see table 2). Input data 
for the predictions consists only of the location's coordinates and populations, and the 
total number of relationships to predict N^. Like the radiation model, the EM retains the 
advantage of being free of parameters, so no training data is needed. 

In figure 2 we present a box-plot of the predictions from all the three models versus 
real data for fluxes between cities. The results prove consistently that the EM outperforms 
both the radiation model and its bilateral version. To present further evidence of the 
performance of the EM, we include in table 3 the R2 of the predictions at both aggregation 
levels. The results confirm that the EM outperforms previous models. 

Overall, the accuracy of the predictions is similar to that obtained when applying 
transportation models to trip prediction [31, 32]. This is an unexpected finding, since in 
principle, while there is an increasing cost (like time or energy) associated with distance 
when traveling, there is no such cost when making a phone call. While, as stated in the 
introduction, there were previous reports illustrating that social ties depend on physical 
distance, the capability of reproducing a significant portion of the distribution of social ties 
between locations just by employing a map placing them and their populations, highlights 
even more the importance of the geographical space when forming ties. 
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Figure 2. Predictions by different models versus real data. Fluxes between every 
city are presented, considering 297 cities in Portugal, 5446 in Spain, and 3520 
in France. Error bars plot 10%, 30%, 50%, 70% and 90% quantiles. The elliptic 
model outperforms both the radiation and bilateral radiation models in all three 
scenarios. 

5. Communication fluxes within cities 

While previous literature has already stated that distance influences the creation of social 
ties between cities, our dataset allows us to study also urban relationships by using the 
finer spatial aggregation level available: phone towers or zip codes. Predicting all possible 
tower to tower relationships within the country would imply dealing with a T matrix with 
up to 300 million elements, with only less than 1% of them being not null. Thus, the 
prediction accuracy would be severely biased by the huge amount of zero cells. Instead, 
we study the short-range accuracy of the model by applying it in each city where we 
have at least 20 different locations (the upper limit being Paris, where we have over 1000 
mobile phone towers). In total, the analysis includes 40 cities in France, 29 Spain and 20 
in Portugal. 



Table 3. R2 of the different country-wide predictions. Note that these R2 are 
calculated without any logarithmic transformation on data or predictions. The 
number of provinces considered is 97, 20 and 52, respectively. Since the number of 
cities is up to two orders of magnitude larger, the flux matrix T is up to four orders 
of magnitude larger. While elliptic model is always more accurate than previous 
models, the improvement is especially remarkable in fluxes between cities. 

Radiation 
RadiationBI 
Elliptic 

France 
City Province 

0.534 0.615 
0.626 0.723 
0.723 0.790 

Portugal 
City Province 

0.621 0.776 
0.730 0.847 
0.816 0.891 

Spain 
City Province 

0.556 0.588 
0.676 0.668 
0.693 0.748 

Table 4. Average R? for urban fluxes prediction for every city in the data set 
where there are at least 20 different locations (towers or zip codes). The number 
of locations range from this minimum of 20 up to 1000 in Paris. This amounts 
to 40 cities in France, 29 Spain and 20 in Portugal. Although the EM again 
outperforms previous models, each performance is low when compared to country-
wide scenarios. 

France Portugal Spain 

Radiation 0.377 0.527 0.434 
RadiationBI 0.436 0.608 0.498 
Elliptic 0.653 0.658 0.501 

Table 4 presents the results for the three algorithms in terms of average R2. These 
results confirm that the EM still performs better, while the overall prediction accuracy is 
smaller compared to the country-wide experiment. The loss of accuracy within urban areas 
for any model purely based on distance is expected and observed in the transportation 
field [32]. One of the main reasons for this loss of accuracy is the fact that the distance 
is a poorer proxy for travel time or cost in cities. People in cities tend to be within 
a daily radius of action and the decision of others they communicate with depends on 
other metrics related to the different hierarchies that could define a social distance (e.g. 
ethnicity, occupation, etc) [25]. 

5.1. Correction e as a model ¡mprovement for urban areas 

When applying the EM based on figure 1 to urban relationships one should be aware that 
a tower k whose distance to tower i is r ^ = r^ + e, where e <C r¿j, will not be taken into 
account when predicting T^. Since towers tend to be closer to each other in urban areas, 
we propose the correction in figure 3 for urban environments. The variation consists of 
including a correction parameter e so that the ellipse is now the smallest one containing 
the two circles of radius r^ + e centered in i and j . After studying several values of e, we 
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Figure 3. Model modified for intracity predictions, adding the correction term e. 
Each gray line represents a certain city in the dataset with the blue line and the 
shadow representing the general trend. We find predictions improve when some 
correction term is included, reaching a maximum around e = 1 km. 

found that the prediction accuracy peaks near e = 1 km for nearly all the cities (as shown 
in figure 3). 

There may be several interpretations for such a maximum: one could argue that it 
comes from the location error, known to be close to the average distance to neighbors 
from the Voronoi tessellation [33], which is around 1 km on average for our dataset. This 
agrees with the fact that the optimal e is a fixed value and does not depend on the distance 
r between i and j . On the other hand, when applied back to country-wide scenarios we 
found the correction term does not improve the predictions and no peak emerges near 
e ^ rvoronoi or elsewhere, reinforcing the hypothesis that within cities we are reaching the 
boundaries of the resolution of our location data. 

Another way to evaluate the performance of the different models is to compare them 
against empirical data in terms of the link-distance distribution P(r), which represents the 
probability of observing a relationship between two people living r kilometers from each 
other. Figure 4 shows the improvement in P{r) when applying the e = 1 km correction. 
Without the correction term, short-range relationships are over represented, while the 
EM with the correction fits almost perfectly with the distribution obtained from the data. 
Note that although radiation model predictions also improve, it still predicts shorter 
relationships than those observed in the data. 

Table 5 shows results of the corrected model for urban environments in terms of average 
R2, which confirm a significant performance increase when applying the corrected model 
with e = 1 km across all cities in the data set. 

6. Conclusions and further research 

In this paper the problem of predicting communication fluxes between different locations 
has been successfully addressed. A new model has been proposed to calculate the 
communication fluxes using only population distribution data. This data is publicly 
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Figure 4. Left: fraction of relationships P(r) within distance r in the real dataset 
compared to predictions by both elliptic and bilateral radiation models where 
e = 0 for Porto (Portugal). Right: the elliptic prediction gets very close to the 
data when using e = 1 km. Although the radiation model predictions also improve, 
they still predict shorter relationships than those observed in reality. 

Table 5. Average R2 of the predictions for the corrected model with e = 1 km, 
compared to the original (non-corrected) model. 

Elliptic £ = 
Elliptic £ = 

= 0 
= f km 

France 

0.670 
0.846 

Portugal 

0.645 
0.740 

Spain 

0.494 
0.688 

available worldwide through projects which provide population estimates for almost every 
square mile on earth. 

The presented model successfully takes into account the symmetry of the communica­
tion fluxes, in order to predict the number of social ties between geographical locations at 
different scales, ranging from neighborhoods to regions. Interestingly, we have shown that 
geolocated population data is as useful to predict communication fluxes as it is to predict 
trip fluxes. 

The proposed model is readily available to be used by researchers in different social 
sciences studying various phenomena where human ties are known to be crucial, such as 
information propagation or disease spreading. Overall, our model implies social ties are to 
a large extent driven by geographical factors. While there may be other factors influencing 
very long distance relationships (e.g. time zones, or natural, national [34] and language 
borders [35]) the available data did not allow us to check them, so that further research 
would be needed along this line. 

In order to enhance the employment of the EM by the research community, 
implementations in three widely used programming languages have been made available 
on our homepage [36], together with an interactive tool usmgdépartments in France as an 
example scenario. 

e = 1km 

- Data 
- RadBI 
- Elliptic 
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