6,334 research outputs found

    New Approach on the General Shape Equation of Axisymmetric Vesicles

    Full text link
    The general Helfrich shape equation determined by minimizing the curvature free energy describes the equilibrium shapes of the axisymmetric lipid bilayer vesicles in different conditions. It is a non-linear differential equation with variable coefficients. In this letter, by analyzing the unique property of the solution, we change this shape equation into a system of the two differential equations. One of them is a linear differential equation. This equation system contains all of the known rigorous solutions of the general shape equation. And the more general constraint conditions are found for the solution of the general shape equation.Comment: 8 pages, LaTex, submit to Mod. Phys. Lett.

    On the Three-dimensional Lattice Model

    Get PDF
    Using the restricted star-triangle relation, it is shown that the NN-state spin integrable model on a three-dimensional lattice with spins interacting round each elementary cube of the lattice proposed by Mangazeev, Sergeev and Stroganov is a particular case of the Bazhanov-Baxter model.Comment: 8 pages, latex, 4 figure

    Applying the scientific method to understand anomalous heat effect

    Get PDF
    Abstract only.Scientific methods in nuclear science are proposed to understand anomalous heat effect: (1) Neutrino Detection; (2) Internal Conversion Electrons; (3) RF emission and magnetic field fluctuation; (4) 3-Deuteron reaction; (5) Solid State Nuclear Track Detector(CR-39); (6) 6Li+p resonance at low energy. Each topic will be discussed in order

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation

    Get PDF
    The microtensile properties of mechanically isolated compression wood (CW) and opposite wood (OW) tracheids of Chinese fir (Cunninghamia lanceolata) were investigated and discussed with respect to their structure. Major differences in the tensile modulus and ultimate tensile stress were found between CW and OW fibers. Compared to OW, CW showed a larger cellulose microfibril angle, less cellulose content and probably more pits, resulting in lower tensile properties. These findings contribute to a further understanding of the structural–mechanical relationships of Chinese fir wood at the cell and cell wall level, and provide a scientific basis for better utilization of plantation softwood

    Probing Spin-Flip Scattering in Ballistic Nanosystems

    Get PDF
    Because spin-flip length is longer than the electron mean-free path in a metal, past studies of spin-flip scattering are limited to the diffusive regime. We propose to use a magnetic double barrier tunnel junction to study spin-flip scattering in the nanometer sized spacer layer near the ballistic limit. We extract the voltage and temperature dependence of the spin-flip conductance Gs in the spacer layer from magnetoresistance measurements. In addition to spin scattering information including the mean-free path (70 nm) and the spin-flip length (1:0–2:6 m) at 4.2 K, this technique also yields information on the density of states and quantum well resonance in the spacer laye

    Synthesizing SystemC Code from Delay Hybrid CSP

    Full text link
    Delay is omnipresent in modern control systems, which can prompt oscillations and may cause deterioration of control performance, invalidate both stability and safety properties. This implies that safety or stability certificates obtained on idealized, delay-free models of systems prone to delayed coupling may be erratic, and further the incorrectness of the executable code generated from these models. However, automated methods for system verification and code generation that ought to address models of system dynamics reflecting delays have not been paid enough attention yet in the computer science community. In our previous work, on one hand, we investigated the verification of delay dynamical and hybrid systems; on the other hand, we also addressed how to synthesize SystemC code from a verified hybrid system modelled by Hybrid CSP (HCSP) without delay. In this paper, we give a first attempt to synthesize SystemC code from a verified delay hybrid system modelled by Delay HCSP (dHCSP), which is an extension of HCSP by replacing ordinary differential equations (ODEs) with delay differential equations (DDEs). We implement a tool to support the automatic translation from dHCSP to SystemC
    • …
    corecore