264 research outputs found

    Large gap magnetic suspension system

    Get PDF
    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system

    Magnetic suspension and balance system advanced study

    Get PDF
    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design

    Repulsive force support system feasibility study

    Get PDF
    A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings

    Magnetic suspension and balance system study

    Get PDF
    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs

    Magnetic suspension and balance system advanced study, 1989 design

    Get PDF
    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved

    Analyzing CNN Based Behavioural Malware Detection Techniques on Cloud IaaS

    Full text link
    Cloud Infrastructure as a Service (IaaS) is vulnerable to malware due to its exposure to external adversaries, making it a lucrative attack vector for malicious actors. A datacenter infected with malware can cause data loss and/or major disruptions to service for its users. This paper analyzes and compares various Convolutional Neural Networks (CNNs) for online detection of malware in cloud IaaS. The detection is performed based on behavioural data using process level performance metrics including cpu usage, memory usage, disk usage etc. We have used the state of the art DenseNets and ResNets in effectively detecting malware in online cloud system. CNN are designed to extract features from data gathered from a live malware running on a real cloud environment. Experiments are performed on OpenStack (a cloud IaaS software) testbed designed to replicate a typical 3-tier web architecture. Comparative analysis is performed for different metrics for different CNN models used in this research

    Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones

    Get PDF
    Salinity stress (SS) is a challenging abiotic stress that limits crop growth and productivity. Sustainable and cost effective methods are needed to improve crop production and decrease the deleterious impacts of SS. Zinc (Zn) nanoparticles (NPs) have emerged as an important approach to regulating plant tolerance against SS. However, the mechanisms of SS tolerance mediated by Zn-NPs are not fully explained. Thus, this study was performed to explore the role of Zn-NPs (seed priming and foliar spray) in reducing the deleterious impacts of SS on wheat plants. The study comprised different SS levels: control, 6 and 12 dS m−1, and different Zn-NPs treatments: control, seed priming (40 ppm), foliar spray (20 ppm), and their combination. Salinity stress markedly reduced plant growth, biomass, and grain yield. This was associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na), chloride (Cl) accumulation, reduced photosynthetic pigments, relative water contents (RWC), photosyntetic rate (Pn), transpiration rate (Tr), stomata conductance (Gs), water use efficiency (WUE), free amino acids (FAA), total soluble protein (TSP), indole acetic acid (IAA), gibberellic acid (GA), and nutrients (Ca, Mg, K, N, and P). However, the application of Zn-NPs significantly improved the yield of the wheat crop, which was associated with reduced abscisic acid (ABA), MDA, H2O2 concentration, and EL, owing to improved antioxidant activities, and an increase in RWC, Pn, Tr, WUE, and the accumulation of osmoregulating compounds (proline, soluble sugars, TSP, and FAA) and hormones (GA and IAA). Furthermore, Zn-NPs contrasted the salinity-induced uptake of toxic ions (Na and Cl) and increased the uptake of Ca, K, Mg, N, and P. Additionally, Zn-NPs application substantially increased the wheat grain Zn bio-fortification. Our results support previous findings on the role of Zn-NPs in wheat growth, yield, and grain Zn bio-fortification, demonstrating that beneficial effects are obtained under normal as well as adverse conditions, thanks to improved physiological activity and the accumulation of useful compounds. This sets the premise for general use of Zn-NPs in wheat, to which aim more experimental evidence is intensively being sought. Further studies are needed at the genomic, transcriptomic, proteomic, and metabolomic level to better acknowledge the mechanisms of general physiological enhancement observed with Zn-NPs application

    Localised and delocalised plasmons in metallic nano-voids

    No full text
    Nanostructured metal films comprised of periodically arranged spherical voids are grown by electrochemical deposition through a self-assembled template. Detailed measurements of the angle- and orientation-dependent reflectivity for different sample geometries reveal the spectral dispersion of several different types of surface plasmon modes. The dependence of the energies of both delocalized Bragg and localized Mie plasmons on the void goemetry is presented, along with theoretical models to explain some of these experimental findings. Strong interactions between the different plasmon modes as well as other mixing processes are identified. Understanding such plasmonic crystals allows for the engineering of devices tailored for a wide range of sensing application

    Knowledge of dental academics about the COVID-19 pandemic: a multi-country online survey

    Get PDF
    Background: COVID-19 is a global pandemic affecting all aspects of life in all countries. We assessed COVID-19 knowledge and associated factors among dental academics in 26 countries. Methods: We invited dental academics to participate in a cross-sectional, multi-country, online survey from March to April 2020. The survey collected data on knowledge of COVID-19 regarding the mode of transmission, symptoms, diagnosis, treatment, protection, and dental treatment precautions as well as participants’ background variables. Multilevel linear models were used to assess the association between dental academics’ knowledge of COVID-19 and individual level (personal and professional) and country-level (number of COVID-19 cases/ million population) factors accounting for random variation among countries. Results: Two thousand forty-five academics participated in the survey (response rate 14.3%, with 54.7% female and 67% younger than 46 years of age). The mean (SD) knowledge percent score was 73.2 (11.2) %, and the score of knowledge of symptoms was significantly lower than the score of knowledge of diagnostic methods (53.1 and 85.4%, P < 0.0001). Knowledge score was significantly higher among those living with a partner/spouse than among those living alone (regression coefficient (B) = 0.48); higher among those with PhD degrees than among those with Bachelor of Dental Science degrees (B = 0.48); higher among those seeing 21 to 30 patients daily than among those seeing no patients (B = 0.65); and higher among those from countries with a higher number of COVID-19 cases/million population (B = 0.0007). Conclusions: Dental academics had poorer knowledge of COVID-19 symptoms than of COVID-19 diagnostic methods. Living arrangements, academic degrees, patient load, and magnitude of the epidemic in the country were associated with COVD-19 knowledge among dental academics. Training of dental academics on COVID-19 can be designed using these findings to recruit those with the greatest need
    • …
    corecore