108 research outputs found

    Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method : the observation of DNAemia

    Get PDF
    Blood is considered to be a sterile microenvironment, in which bacteria appear only periodically. Previously used methods allowed only for the detection of either viable bacteria with low sensitivity or selected species of bacteria. The Next-Generation Sequencing method (NGS) enables the identification of all bacteria in the sample with their taxonomic classification. We used NGS for the analysis of blood samples from healthy volunteers (n = 23) and patients with sepsis (n = 62) to check whether any bacterial DNA exists in the blood of healthy people and to identify bacterial taxonomic profile in the blood of septic patients. The presence of bacterial DNA was found both in septic and healthy subjects; however, bacterial diversity was significantly different (P = 0.002) between the studied groups. Among healthy volunteers, a significant predominance of anaerobic bacteria (76.2 %), of which most were bacteria of the order Bifidobacteriales (73.0 %), was observed. In sepsis, the majority of detected taxa belonged to aerobic or microaerophilic microorganisms (75.1 %). The most striking difference was seen in the case of Actinobacteria phyla, the abundance of which was decreased in sepsis (P < 0.001) and Proteobacteria phyla which was decreased in the healthy volunteers (P < 0.001). Our research shows that bacterial DNA can be detected in the blood of healthy people and that its taxonomic composition is different from the one seen in septic patients. Detection of bacterial DNA in the blood of healthy people may suggest that bacteria continuously translocate into the blood, but not always cause sepsis; this observation can be called DNAemia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10096-016-2805-7) contains supplementary material, which is available to authorized users

    Glucosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae

    Get PDF
    AbstractExtension of a reporter protein with the carboxyterminal thirty amino acids of the cell wall mannoprotein α-agglutinin of Saccharomyces cerevisiae resulted in incorporation of the chimeric protein in the cell wall. By Western analysis it was shown that the incorporated protein contained ÎČ-1,6-glucan similar to endogenous cell wall proteins, whereas excreted reporter protein was not glucosylated. This suggests that ÎČ-1,6-glucan is involved in anchoring mannoproteins in the cell wall

    Difference in expression between AQP1 and AQP5 in porcine endometrium and myometrium in response to steroid hormones, oxytocin, arachidonic acid, forskolin and cAMP during the mid-luteal phase of the estrous cycle and luteolysis

    Get PDF
    BACKGROUND: Recently, we demonstrated in vitro that AQP1 and AQP5 in the porcine uterus are regulated by steroid hormones (P4, E2), arachidonic acid (AA), forskolin (FSK) and cAMP during the estrous cycle. However, the potential of the porcine separated uterine tissues, the endometrium and myometrium, to express these AQPs remains unknown. Thus, in this study, the responses of AQP1 and AQP5 to P4, E2 oxytocin (OT), AA, FSK and cAMP in the porcine endometrium and myometrium were examined during the mid-luteal phase of the estrous cycle and luteolysis.METHODS: Real-time PCR and western blot analysis.RESULTS: Progesterone up-regulated the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium, especially during luteolysis. Similarly, E2 also stimulated the expression of both AQPs, but only in the endometrium. AA led to the upregulation of AQP1/AQP5 in the endometrium during luteolysis. In turn, OT increased the expression of AQP1/AQP5 mRNAs and proteins in the myometrium during mid-luteal phase. Moreover, a stimulatory effect of forskolin and cAMP on the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium dominated during luteolysis, but during the mid-luteal phase their influence on the expression of these AQPs was differentiated depending on the type of tissue and the incubation duration.CONCLUSIONS: These results seem to indicate that uterine tissues; endometrium and myometrium, exhibit their own AQP expression profiles in response to examined factors. Moreover, the responses of AQP1/AQP5 at mRNA and protein levels to the studied factors in the endometrium and myometrium are more pronounced during luteolysis. This suggests that the above effects of the studied factors are connected with morphological and physiological changes taking place in the pig uterus during the estrous cycle.</p

    Seamless Communication for Crises Management

    Get PDF
    SECRICOM is proposed as a collaborative research project aiming at development of a reference security platform for EU crisis management operations with two essential ambitions: (A) Solve or mitigate problems of contemporary crisis communication infrastructures (Tetra, GSM, Citizen Band, IP) such as poor interoperability of specialized communication means, vulnerability against tapping and misuse, lack of possibilities to recover from failures, inability to use alternative data carrier and high deployment and operational costs. (B) Add new smart functions to existing services which will make the communication more effective and helpful for users. Smart functions will be provided by distributed IT systems based on an agents’ infrastructure. Achieving these two project ambitions will allow creating a pervasive and trusted communication infrastructure fulfilling requirements of crisis management users and ready for immediate application

    Therapeutic validation of an orphan G protein-coupled receptor: the case of GPR84

    Get PDF
    Despite the importance of members of the G protein‐coupled receptor (GPCR) superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. In certain cases even the endogenous ligand(s) that activates them remains undefined or uncertain. Such GPCRs are designated as orphan receptors and although this is frequently also associated with a limited pharmacological palette of selective ligands, this does not mean that there is a lack of interest in better understanding and assessing specific orphan GPCRs as novel therapeutic opportunities. GPR84 is an example. Expression of GPR84 is strongly upregulated in immune cells in a range of pro‐inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology
    • 

    corecore