73 research outputs found

    Dynamic Power Convertor Development for Radioisotope Power Systems at NASA Glenn Research Center

    Get PDF
    The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled and inspected. This inspection produced a wealth of information about the effects of this amount of runtime on the technology's components. One of the engineering unit flexure-bearing convertors recently underwent launch simulation vibration test, a static acceleration exposure up to 20 g, and was then placed on extended operation. Amongst the gas-bearing convertors, the longest running unit has accumulated over 70,000 hours of operation. Four high-fidelity gas-bearing convertors from the ASRG project are still operating continuously, for which the longest runtime has reached 28,000 hours

    Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers

    Get PDF
    Absent in Melanoma 2 (AIM2) is a member of the HIN-200 family of hematopoietic, IFN-inducible, nuclear proteins, associated with both, infection defense and tumor pathology. Recently, AIM2 was found to act as a DNA sensor in innate immunity. In addition, we and others have previously demonstrated a high frequency of AIM2-alterations in microsatellite unstable (MSI-H) tumors. To further elucidate AIM2 function in colorectal tumors, we here addressed AIM2-responsive target genes by microarray based gene expression profiling of 22 244 human genes. A total of 111 transcripts were significantly upregulated, whereas 80 transcripts turned out to be significantly downregulated in HCT116 cells, constitutively expressing AIM2, compared with AIM2-negative cells. Among the upregulated genes that were validated by quantitative PCR and western blotting we recognized several interferon-stimulated genes (ISGs: IFIT1, IFIT2, IFIT3, IFI6, IRF7, ISG15, HLA-DRA, HLA-DRB, TLR3 and CIITA), as well as genes involved in intercellular adhesion and matrix remodeling. Expression of ISGs correlated with expression of AIM2 in 10 different IFN-γ treated colorectal cancer cell lines. Moreover, small interfering RNA-mediated knock-down of AIM2 resulted in reduced expression of HLA-DRA, HLA-DRB and CIITA in IFN-γ-treated cells. IFN-γ independent induction of HLA-DR genes and their encoded proteins was also demonstrated upon doxycyclin-regulated transient induction of AIM2. Luciferase reporter assays revealed induction of the HLA-DR promoter upon AIM2 transfection in different cell lines. STAT-signaling was not involved in IFN-γ independent induction of ISGs, arguing against participation of cytokines released in an autostimulating manner. Our data indicate that AIM2 mediates both IFN-γ dependent and independent induction of several ISGs, including genes encoding the major histocompatibility complex (MHC) class II antigens HLA-DR-α and -β. This suggests a novel role of the IFN/AIM2/ISG cascade likewise in cancer cells

    Prenatal and Postnatal Tobacco Exposure and Behavioral Problems in 10-Year-Old Children: Results from the GINI-plus Prospective Birth Cohort Study

    Get PDF
    BACKGROUND: Prenatal and postnatal tobacco exposure have been reported to be associated with behavioral problems. However, the magnitude of the association with tobacco exposure at specific periods of exposure is unclear. OBJECTIVE: We assessed the relative risk of behavioral problems in children who had been exposed to tobacco smoke in utero and postnatally. METHODS: We analyzed data from a prospective birth cohort study in two cities in Germany: the German Infant Nutrition Intervention. Our sample included 5,991 children born between 1995 and 1998 as well as their parents. We measured behavioral problems using the Strength and Difficulties Questionnaire (SDQ) at follow-up 10 years after birth. According to prespecified SDQ cutoff values, children were classified as "normal," "borderline," or "abnormal" according to the subscales "emotional symptoms," "conduct problems," "hyperactivity/inattention," "peer-relationship problems," and a total difficulties score. Smoke exposure and further covariates were assessed using parent questionnaires. RESULTS: Compared with children not exposed to tobacco smoke, children exposed both pre- and postnatally to tobacco smoke had twice the estimated risk [95% confidence interval (CI), 1.4-3.1] of being classified as abnormal according to the total difficulties score of the SDQ at 10 years of age. Children who were only prenatally exposed had a 90% higher relative risk (95% CI, 0.9-4.0), whereas children who were only postnatally exposed had a 30% higher relative risk (95% CI, 0.9-1.9). These results could not be explained by confounding by parental education, father's employment, child's time spent in front of computer or television screen, being a single father or mother, or mother's age. CONCLUSIONS: Prenatal exposure to tobacco smoke is associated with behavioral problems in school-age children. Although our findings do not preclude the influence of postnatal exposure, prenatal exposure seems to be more important

    Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    Get PDF
    Abstract Background Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. Methods We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Results Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. Conclusions TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition.</p

    National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products

    Get PDF
    The National Beef Quality Audit-2016 (NBQA-2016) was conducted to assess current transportation, mobility, and quality characteristics of U.S. fed steers and heifers. Data were collected at 17 beef processing facilities between March and November 2016. About 8,000 live cattle were evaluated for transportation and mobility, and about 25,000 carcasses were evaluated on the slaughter floor. Cattle were in transit to the slaughter facility for a mean duration of 2.7 h from a mean distance of 218.5 km using trailers with dimensions ranging from 17.84 m2 to 59.09 m2. Area allotted per animal averaged 1.13 m2 and ranged from 0.85 m2 to 2.28 m2. A total of 96.8% of cattle received a mobility score of 1 (walks easily, no apparent lameness). Identification types (35.1% had multiple) were lot visual tags (61.5%), individual tags (55.0%), electronic tags (16.9%), metal-clip tags (9.2%), bar-coded tags (0.05%), wattles (0.01%), and other (2.6%). Cattle were black-hided (57.8%), Holstein (20.4%), red-hided (10.5%), yellow-hided (4.8%), gray-hided (2.9%), brown-hided (1.3%), and white-hided (1.1%). Unbranded hides were observed on 74.3% of cattle; 18.6% had brands located on the butt, 6.3% on the side, and 1.3% on the shoulder (values exceed 100% due to multiple brands). For hide-on carcasses, 37.7% displayed no mud or manure; specific locations for mud or manure were legs (40.8%), belly (33.0%), tail region (15.5%), side (6.8%), and top-line (3.9%). Cattle without horns represented 83.3% of the sample, and cattle that did have horns measured: \u3c 2.54 cm (5.5%), 2.54 to 12.7 cm (8.3%), and \u3e 12.7 cm (2.9%). Carcasses without bruises represented 61.1% of those sampled, whereas 28.2% had 1, 8.2% had 2, 2.1% had 3, and 0.3% had 4 bruises. Of those carcasses with a bruise, the bruise was located on the loin (29.7%), round (27.8%), chuck (16.4%), rib (14.4%), and brisket/plate/flank (11.6%). Frequencies of offal condemnations were livers (30.8%), lungs (18.2%), viscera (16.3%), hearts (11.1%), heads (2.7%), and tongues (2.0%). Compared to NBQA-2011, fewer cattle were identified for traceability, fewer were black-hided, a greater number were Holstein cattle, more with no brand and no horns, fewer without bruises, more liver, lung, and viscera condemnations, and fewer heads and tongues were condemned. The NBQA remains an influential survey for the U.S. beef industry to provide benchmarks and strategic plans for continued improvement of beef quality and consistency

    Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases

    Get PDF
    Colorectal carcinomas (CRCs) with high microsatellite instability (MSI-H) share clinicopathological features distinctly different from their microsatellite stable (MSS) counterparts. Unlike MSS cancers, MSI-H CRCs occur predominantly in the right-sided colon and are often characterised by a strong lymphocyte infiltration. A poor differentiation pattern is found in most MSI-H CRCs, even though patients with MSI-H carcinomas seem to have a significantly longer survival after surgical resection. To clarify which factors contribute to the obvious paradoxon of a more favourable prognosis of MSI tumours, several clinical and histopathological features as well as the microsatellite status were evaluated in 120 colorectal cancer cases fulfilling clinical criteria (Bethesda) indicative for familial colorectal cancer. Microsatellite instablity status and lymphocyte infiltration were related to tumour stage and patients' follow-up. Statistical analysis confirmed well-known relations, such as enhanced lymphocyte infiltration accompanied by Crohn's like reaction (CLR) in MSI-H cancers (CLR+ in 27 out of 47 MSI-H vs 14 out of 71 MSS CRCs, P<0.001). However, after stratification for depth of local invasion and penetration of the primary tumour, T3 tumours displaying MSI had a significantly lower rate of distant metastases (M1 in four out of 35 MSI-H vs 20 out of 41 MSS CRCs, P<0.001). A similar tendency was observed for CLR-positive CRCs (M1 in six out of 29 CLR+ vs 17 out of 45 CLR− CRCs, P=0.13). In a logistic regression model, the MSI-H phenotype and the presence of CLR were independent predictors of a low UICC stage (P=0.006 and 0.04, respectively). These data, together with the recent definition of highly immunogenic neo-antigens expressed in MSI-H tumour cells, suggest that MSI-H CRCs elicit a protective host response that may prevent metastasis formation

    Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?

    Get PDF
    Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.ALG-01-0145-FEDER-29480, SFRH/BD/133192/2017, SFRH/BD/133192/2017, SFRH/BD/148533/2019info:eu-repo/semantics/publishedVersio

    Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    Get PDF
    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states
    corecore