84 research outputs found

    Anticipatory Vibrotactile Cueing Facilitates Grip Force Adjustment during Perturbative Loading

    Get PDF
    Grip force applied to an object held between the thumb and index finger is automatically and unconsciously adjusted upon perception of an external disturbance to the object. Typically, this adjustment occurs within approximately 100 ms. Here, we investigated the effect of anticipatory vibrotactile cues prior to a perturbative force, which the central nervous system may use for rapid grip re-stabilization. We asked participants to grip and hold an instrumented, actuated handle between the thumb and index finger. Under computer control, the handle could suddenly be pulled away from a static grip and could independently provide vibration to the gripping fingers. The mean latency of corrective motor action was 139 ms. When vibrotactile stimulation was applied 50 ms before application of tractive force, the latency was reduced to 117 ms, whereas the mean latency of the conscious response to vibrotactile stimuli alone was 229 ms. This suggests that vibrotactile stimulation can influence reflex-like actions. We also examined the effects of anticipatory cues using a set of perturbative loads with different rising rates. As expected, facilitation of grip force adjustment was observed for moderate loads. In contrast, anticipatory cues had an insignificant effect on rapid loads that evoked an adjustment within 60-80 ms, which approaches the minimum latency of human grip adjustment. Understanding the facilitative effects of anticipatory cues on human reactive grip can aid the development of human-machine interfaces to enhance human behavior

    Texture Rendering Strategies with a High Fidelity - Capacitive Visual-Haptic Friction Control Device

    Get PDF
    International audienceUltrasonic vibrations of a plate can modify the perception of the friction between a surface and a sliding finger. This principle, coupled with modern position sensing techniques, is able to reproduce textured materials. In this paper , an open loop control through model inversion of the friction force between the finger and the plate is presented. The device incorporating the control system is described, and two different reproduction strategies are formalized to address the reproduction of objects and textures. In the end, a psychophysical experiment evaluating the two control strategies is described

    Electromagnetic Actuator for Tactile Communication

    Get PDF

    Travelling Ultrasonic Wave Enhances Keyclick Sensation

    Get PDF
    International audienceA realistic keyclick sensation is a serious challenge for haptic feedback since vibrotactile rendering faces the limitation of the absence of contact force as experienced on physical buttons. It has been shown that creating a keyclick sensation is possible with stepwise ultrasonic friction modulation. However, the intensity of the sensation is limited by the impedance of the fingertip and by the absence of a lateral force component external to the finger. In our study, we compare this technique to rendering with an ultrasonic travelling wave, which exerts a lateral force on the fingertip. For both techniques, participants were asked to report the detection (or not) of a keyclick during a forced choice one interval procedure. In experiment 1, participants could press the surface as many time as they wanted for a given trial. In experiment 2, they were constrained to press only once. The results show a lower perceptual threshold for travelling waves. Moreover, participants pressed less times per trial and exerted smaller normal force on the surface. The subjective quality of the sensation was found similar for both techniques. In general, haptic feedback based on travelling ultrasonic waves is promising for applications without lateral motion of the finger

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    ViPong: Probabilistic haptic feedback for eyes-free interaction

    No full text
    Conference of 2013 IEEE World Haptics Conference, WHC 2013 ; Conference Date: 14 April 2013 Through 17 April 2013; Conference Code:98366International audienceWe describe a mechanism for the delivery of haptic feedback to users of a simple game via the use of probabilistic inference. This not only enables the creation of dynamically changing game conditions but also a more adaptable, accessible and enjoyable haptic gaming environment for potential use by visually impaired users. The ViPong proof of concept application uses a mouse instrumented with a custom built lateral vibrator to enable a person to compete eyes-free in a game of pong using only haptic feedback linked to the position of the ball. A preliminary user study shows that it is possible to build eyes-free games using such a mechanism for haptic feedback generation. It also shows that there is some effect on the game play from varying levels of uncertainty injected into the algorithm, with participants performing less well under condition where the uncertainty added to the position of the game ball is high

    Rapid change of friction causes the illusion of touching a receding surface

    No full text
    Shortly after touching an object, humans can tactually gauge the frictional resistance of a surface. The knowledge of surface friction is paramount to tactile perception and the motor control of grasp. While potent correlations between friction and participants' perceptual response have been found, the causal link between the friction of the surface, its evolution and its perceptual experience has yet to be demonstrated. Here, we leverage new experimental apparatus able to modify friction in real time, to show that participants can perceive sudden changes in friction when they are pressing on a surface. Surprisingly, only a reduction of the friction coefficient leads to a robust perception. High-speed imaging data indicate that the sensation is caused by a release of a latent elastic strain over a 20 ms timeframe after the activation of the friction-reduction device. This rapid change of frictional properties during initial contact is interpreted as a normal displacement of the surface, which paves the way for haptic surfaces that can produce illusions of interacting with mechanical buttons. </p

    Active lateral force feedback using resonant traveling waves

    No full text
    The sensation of touching virtual texture and shape can be provided to a touchscreen user by varying the friction force. Despite the saliency of the sensation, this modulated frictional force is purely passive and strictly opposes finger movement. Therefore, it is only possible to create forces along the direction of movement and this technology cannot stimulate a static fingertip or provide forces that are orthogonal to the direction of movement. The lack of orthogonal force limits the guidance to a target in an arbitrary direction and there is a need for active lateral forces to give directional cues to the fingertip. Here, we introduce a surface haptic interface that uses ultrasonic traveling waves to create an active lateral force on bare fingertips. The device is built around a ring shape cavity where two degenerate resonant modes around 40 kHz are excited with 90^{\circ } phase shift. The interface provides active forces up to 0.3 N to a static bare finger uniformly over a 140×30 mm2^{2} surface. We report the model and design of the acoustic cavity, force measurements, and an application to create a key-click sensation. This work demonstrates a promising method for uniformly producing large lateral forces on a touch surface.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Human-Robot Interactio

    Rapid change of friction causes the illusion of touching a receding surface

    No full text
    Shortly after touching an object, humans can tactually gauge the frictional resistance of a surface. The knowledge of surface friction is paramount to tactile perception and the motor control of grasp. While potent correlations between friction and participants' perceptual response have been found, the causal link between the friction of the surface, its evolution and its perceptual experience has yet to be demonstrated. Here, we leverage new experimental apparatus able to modify friction in real time, to show that participants can perceive sudden changes in friction when they are pressing on a surface. Surprisingly, only a reduction of the friction coefficient leads to a robust perception. High-speed imaging data indicate that the sensation is caused by a release of a latent elastic strain over a 20 ms timeframe after the activation of the friction-reduction device. This rapid change of frictional properties during initial contact is interpreted as a normal displacement of the surface, which paves the way for haptic surfaces that can produce illusions of interacting with mechanical buttons. Human-Robot Interactio
    corecore