508 research outputs found

    Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium

    Get PDF
    We have examined modifications to the nuclear weak charge due to small differences between the spatial distributions of neutrons and protons in the Cs nucleus. We derive approximate formulae to estimate the value and uncertainty of this modification based only on nuclear rms neutron and proton radii. Present uncertainties in neutron distributions in Cs are difficult to quantify, but we conclude that they should not be neglected when using atomic parity nonconservation experiments as a means to test the Standard Model.Comment: 5 pages, RevTeX, slightly revised, one figure adde

    Alteration of the conserved residue tyrosine-158 to histidine renders human O6-alkylguanine-DNA alkyltransferase insensitive to the inhibitor O6- benzylguanine

    Get PDF
    The DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) protects cells from alkylation damage. O6-Benzylguanine (BG) is a potent inactivator of human AGT (ED50 of 0.1 μM) that is currently undergoing clinical trials to enhance chemotherapy by alkylating agents. In a screen of AGT mutants randomly mutated at position glycine-160, we found that the double mutant Y158H/G160A protected Escherichia coli from killing by N- methyl-N'-nitro-N-nitrosoguanidine (MNNG) even in the presence of BG and that the AGT activity of this mutant was strongly resistant to BG (ED50 of 180 μM). Because the single mutant G160A was not resistant to BG, this suggested that the presence of the charged histidine residue at position 158 was responsible. This hypothesis was confirmed by the construction of the single mutation Y158H. The Y158H-mutant AGT was slightly less active than wild-type AGT for the repair of mcthylated DNA in vitro, but it protected E. coli from killing by MNNG even in the presence of BG and had an ED50 for the inactivation by BG of 620 μM. In contrast, mutant Y158F had an ED50 of 0.2 μM. Previous studies (M. Xu-Welliver et al., Cancer Res., 58: 1936-1945, 1998) have shown that mutant P140K is highly resistant to BG (ED50 of > 1200 μM). Models of human AGT suggest that the side chain of the lysine inserted into this mutant is close to tyrosine-158 and that the positively charged lysine side-chain may interfere with BG binding. The double mutants P140K/Y158H and P140K/Y158F resembled P140K and Y158H in being highly resistant to BG, but the use of a sensitive assay for reaction of BG with AGT indicated that their abilities to react were in the order P140K/Y158H < P140K < P140K/Y158F. These results confirm that the presence of a positively charged residue close to the active site of human AGT renders it highly resistant to BG without substantially affecting activity toward methylated DNA substrates. Such mutants may limit the value of BG therapy if they arise in malignant cells during chemotherapy, but the mutant sequences may be useful for gene therapy approaches in which BG-resistant human AGTs are used to prevent hematopoietic toxicity. At least 28 AGT sequences (from 25 species) have now been described. In 25 of these, the position equivalent to 158 in the human AGT is also a tyrosine, and in the other 3, it is a phenylalanine. The importance of an aromatic ring side chain at this position is emphasized by previous studies (S. Edara et al., Carcinogenesis, 16: 1637- 1642, 1995), which show that the replacement by alanine renders human AGT inactive. Our results show that histidine can also substitute for tyrosine at this position

    CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Get PDF
    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.Comment: 7 pages, 4 figure

    Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan

    Get PDF
    We report the result of a blinded search for Weakly Interacting Massive Particles (WIMPs) using the majority of the SuperCDMS Soudan dataset. With an exposure of 1690 kg days, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP--nucleon cross section of 1.4×10−441.4 \times 10^{-44} (1.0×10−441.0 \times 10^{-44}) cm2^2 at 46 GeV/c2c^2. These results set the strongest limits for WIMP--germanium-nucleus interactions for masses >>12 GeV/c2c^2

    Acute bronchiolitis in infancy as risk factor for wheezing and reduced pulmonary function by seven years in Akershus County, Norway

    Get PDF
    BACKGROUND: Acute viral bronchiolitis is one of the most common causes of hospitalisation during infancy in our region with respiratory syncytial virus (RSV) historically being the major causative agent. Many infants with early-life RSV bronchiolitis have sustained bronchial hyperreactivity for many years after hospitalisation and the reasons for this are probably multifactorial. The principal aim of the present study was to investigate if children hospitalised for any acute viral bronchiolitis during infancy in our region, and not only those due to RSV, had more episodes of subsequent wheezing up to age seven years and reduced lung function at that age compared to children not hospitalised for acute bronchiolitis during infancy. A secondary aim was to compare the hospitalised infants with proven RSV bronchiolitis (RS+) to the hospitalised infants with non-RSV bronchiolitis (RS-) according to the same endpoints. METHODS: 57 infants hospitalised at least once with acute viral bronchiolitis during two consecutive winter seasons in 1993–1994 were examined at age seven years. An age-matched control group of 64 children, who had not been hospitalised for acute viral bronchiolitis during infancy, were recruited from a local primary school. Epidemiological and clinical data were collected retrospectively from hospital discharge records and through structured clinical interviews and physical examinations at the follow-up visit. RESULTS: The children hospitalised for bronchiolitis during infancy had decreased lung function, more often wheezing episodes, current medication and follow-up for asthma at age seven years than did the age matched controls. They also had lower average birth weight and more often first order family members with asthma. We did not find significant differences between the RSV+ and RSV- groups. CONCLUSION: Children hospitalised for early-life bronchiolitis are susceptible to recurrent wheezing and reduced pulmonary function by seven years compared to age-matched children not hospitalised for early-life bronchiolitis. We propose that prolonged bronchial hyperreactivity could follow early-life RSV negative as well as RSV positive bronchiolitis

    Immunogenicity and Protective Capacity of a Virosomal Respiratory Syncytial Virus Vaccine Adjuvanted with Monophosphoryl Lipid A in Mice

    Get PDF
    Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation

    Effects of Androgen Receptor and Androgen on Gene Expression in Prostate Stromal Fibroblasts and Paracrine Signaling to Prostate Cancer Cells

    Get PDF
    The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium
    • …
    corecore