30 research outputs found

    Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood: Measuring the influence of lifestyle on aging

    Get PDF
    Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1Ξ±, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging

    Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions

    Get PDF
    Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTercβˆ’/βˆ’) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTercβˆ’/βˆ’ mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTercβˆ’/βˆ’ mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (pβ€Š=β€Š0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people

    Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling

    Get PDF
    Background: The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. Results: Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. Conclusions: We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in th

    Ets1 Induces Dysplastic Changes When Expressed in Terminally-Differentiating Squamous Epidermal Cells

    Get PDF
    BACKGROUND: Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed to mainly play a role in later stages of the oncogenic process, but not early events. METHODOLOGY/PRINCIPAL FINDINGS: To better define the role of Ets1 in squamous cell carcinogenesis, we generated a transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1 induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct transcriptional target of Ets1. CONCLUSIONS/SIGNIFICANCE: Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1 oncogene may be important for oncogenic processes in both early and late stages of tumor development

    DNA damage provides novel and powerful biomarkers of Alzheimer disease

    No full text

    Genes Dev

    No full text
    Notch signaling in the presomitic mesoderm (psm) is critical for somite formation and patterning. Here, we show that WNT signals regulate transcription of the Notch ligand Dll1 in the tailbud and psm. LEF/TCF factors cooperate with TBX6 to activate transcription from the Dll1 promoter in vitro. Mutating either T or LEF/TCF sites in the Dll1 promoter abolishes reporter gene expression in vitro as well as in the tail bud and psm of transgenic embryos. Our results indicate that WNT activity, in synergy with TBX6, regulates Dll1 transcription and thereby controls Notch activity, somite formation, and patterning
    corecore