86 research outputs found

    Adaptive Load Balancing Using RR and ALB: Resource Provisioning in Cloud

    Get PDF
    Cloud Computing context, load balancing is an issue. With a rise in the number of cloud-based technology users and their need for a broad range of services utilizing resources successfully or effectively in a cloud environment is referred to as load balancing, has become a significant obstacle. Load balancing is crucial in storage systems to increase network capacity and speed up response times. The main goal is to present a new load-balancing mechanism that can balance incoming requests from users all over globally who are in different regions requesting data from remote data sources. This method will combine effective scheduling and cloud-based techniques. A dynamic load balancing method was developed to ensure that cloud environments have the ability to respond rapidly, in addition to running cloud resources efficiently and speeding up job processing times. Applications' incoming traffic is automatically split up across a number of targets, including Amazon EC2 instances, network addresses, and other entities by elastic load balancing. Elastic load balancing offers three distinct classifications of load balancer, and each one provides high availability, intelligent scalability, and robust security to guarantee the error-free functioning of your applications. Application load balancing and round robin are the two load balancing mechanisms in database cloud that are focus of this research study

    TCO evaluation in physical asset management : benefits and limitations for industrial adoption

    Get PDF
    Part 1: Knowledge-Based Performance ImprovementInternational audienceNowadays, the evaluation of the total cost of ownership (TCO) of an asset for supporting informed decision-making both for investments and managerial issues within the asset management framework is gaining increasing attention in industry. Nevertheless its application in practice is still limited. The aim of this paper is to analyze the benefits and limitations of the adoption of TCO evaluation in asset management. Based on a literature review, the paper defines a framework that categorizes the benefits and potential applications that a TCO model can have for different stakeholders. Together with that, industry related issues that influence its implementation are also considered. Finally, empirical evidences are analyzed through a multiple case study to understand if those benefits are recognized in practice and which are the limitations for the practical adoption of a TCO model that should allow exploiting such benefits

    Synergistic Activity of Rhamnolipid Biosurfactant and Nanoparticles Synthesized Using Fungal Origin Chitosan Against Phytopathogens

    Get PDF
    Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 μg/ml) was observed than that of FCH and FCHNPs (>1,024 μg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 μg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 μg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61–90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future

    The relevance of fungi in astrobiology research – Astromycology

    Get PDF
    Since the very first steps of space exploration, fungi have been recorded as contaminants, hitchhikers, or as part of missions’ crews and payloads. Because fungi can cause human disease and are highly active decomposers, their presence in a space-linked context has been a source of major concern given their possible detrimental effects on crews and space structures. However, fungi can also be beneficial and be used for many space applications. The exact effects on fungi are not always clear as they possess high adaptability and plasticity, and their phenotypes and genotypes can undergo several changes under the extreme conditions found in space, thus leading to different results than those we would have on Earth. Understanding and analysing these aspects is the subject of astromycology, a research field within astrobiology. The impending situation of a resurgent space race is expected to boost astromycology’s visibility and importance. However, researchers lack both a framework and a solid base of knowledge from which to contextualise their work. This critical review addresses this gap by conceptualising the field of astromycology, covering key research and current questions pertaining to the field, and providing a relevant research instrument for future work

    Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>

    Get PDF
    © 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production

    Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Get PDF
    Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence

    Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint, and Face Recognition

    Full text link
    In this Paper,the actual presence of a real legitimate trait in contrast to a fake self-manufactured synthetic or reconstructed sample is a significant problem in biometric authentication, which requires the development of new and efficient protection measures. In this paper, we present a novel software-based fake detection method that can be used in multiple biometric systems to detect different types of fraudulent access attempts. The objective of the proposed system is to enhance the security of biometric recognition frameworks, by adding livensassessment in a Fast, user-friendly, and non-intrusive manner, through the use of image quality assessment

    Liquid phase oxidation of amines to azoxy compounds over ETS-10 molecular sieves

    No full text
    A convenient method for the oxidation of aryl amines to azoxybenzenes with H<SUB>2</SUB>O<SUB>2</SUB> or tertiary butyl hydroperoxide over the titanosilicate ETS-10 is reported. Over ETS-10, aniline is transformed into azoxybenzene in greater than 97% yield with H<SUB>2</SUB>O<SUB>2</SUB> as the oxidant. Substituted anilines are also transformed in good yields. Yield and H<SUB>2</SUB>O<SUB>2</SUB> efficiency depend largely on experimental parameters such as catalyst concentration, H<SUB>2</SUB>O<SUB>2</SUB>: substrate mole ratio and the nature of the solvent

    Bi?directionalmixer

    Full text link
    In conventional method of mixing the metal oxide powder and vehicle mixing is carried out on ‘Unidirectional Stirring Machine' The stirrer of conventional machine rotates in one direction only which creates a particular flow pattern in the fluids hence the particles tend to stick to the walls of container owing to the centrifugal force rather than mixing thoroughly in mixture of paint, ultimately results into poor quality mixture of paints there by poor quality output of paint .In order to have a homogeneous mixing would be appropriate to have a directions of rotation of stirrer shaft which will rotate stirrer blades in opposite directions in one cycle this will form turbulent flow pattern there by leading to creation of irregular flow pattern and resulting into thoroughly mixed paint mixture preparation which will create the good quality paint
    corecore