360 research outputs found

    DNA-Directed Assembly of a Cell-Responsive Biohybrid Interface for Cargo Release

    Get PDF
    The development of a DNA-based cell-responsive biohybrid interface that can be used for spatially confined release of molecular cargo is reported. To this end, tailored DNA–protein conjugates are designed as gatekeepers that can be specifically cleaved by matrix metalloproteases (MMPs), which are secreted by many cancer cells. These gatekeepers can be installed by DNA hybridization on the surface of mesoporous silica nanoparticles (MSNs). The MSNs display another orthogonal DNA oligonucleotide that can be exploited for site-selective immobilization on solid glass surfaces to yield micropatterned substrates for cell adhesion. Using the human fibrosarcoma cell line HT1080 that secretes MMPs, it is demonstrated that the biohybrid surface is specifically modified by the cells to release both MSN-bound gatekeeper proteins and the encapsulated cargo peptide KLA. In view of the enormously high modularity of the system presented here, this approach promising for applications in drug delivery, tissue engineering, or other areas of nanobiotechnology is considered

    Orthogonal protein decoration of DNA nanostructures based on SpyCatcher–SpyTag interaction

    Get PDF
    We present an efficient and readily applicable strategy for the covalent ligation of proteins to DNA origami by using the SpyCatcher–SpyTag (SC–ST) connector system. This approach showed orthogonality with other covalent connectors and has been used exemplarily for the immobilization and study of stereoselective ketoreductases to gain insight into the spatial arrangement of enzymes on DNA nanostructures

    An open multi-physics framework for modelling wildland-urban interface fire evacuations

    Get PDF
    Fire evacuations at wildland-urban interfaces (WUI) pose a serious challenge to the emergency services, and are a global issue affecting thousands of communities around the world. This paper presents a multi-physics framework for the simulation of evacuation in WUI wildfire incidents, including three main modelling layers: wildfire, pedestrians, and traffic. Currently, these layers have been mostly modelled in isolation and there is no comprehensive model which accounts for their integration. The key features needed for system integration are identified, namely: consistent level of refinement of each layer (i.e. spatial and temporal scales) and their application (e.g. evacuation planning or emergency response), and complete data exchange. Timelines of WUI fire events are analysed using an approach similar to building fire engineering (available vs. required safe egress times for WUI fires, i.e. WASET/WRSET). The proposed framework allows for a paradigm shift from current wildfire risk assessment and mapping tools towards dynamic fire vulnerability mapping. This is the assessment of spatial and temporal vulnerabilities based on the wildfire threat evolution along with variables related to the infrastructure, population and network characteristics. This framework allows for the integration of the three main modelling layers affecting WUI fire evacuation and aims at improving the safety of WUI communities by minimising the consequences of wildfire evacuations

    A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami—Cell Interactions

    Get PDF
    The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells

    Evaluation of camel milk for selected processing related parameters and comparisons with cow and buffalo milk

    Get PDF
    Cow and buffalo milk and camel milk were analyzed and compared for processing related parameters. The average heat stability of cow, buffalo and camel milk samples analyzed was 1807.4 seconds, 1574.6 seconds and 133.6 seconds respectively at 140 °C. Thus, the heat stability of camel milk was significantly lower than the cow milk and buffalo milk. The average rennet coagulation time (RCT) of cow, buffalo and camel milk was 310.6 seconds, 257.4 seconds and 604.2 seconds respectively. Thus, RCT of camel milk was significantly higher than the cow milk and buffalo milk. The camel, cow and buffalo milk samples showed negative alcohol stability. The rate of acidity was increased propositionally with time in camel milk with no curd formation and weaker body

    Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs

    Get PDF
    Context: Crataegus monogyna L. (Rosaceae) (CM), Equisetum telmateia L. (Equisataceae) (ET), Geranium purpureum Vil. (Geraniaceae) (GP), Mentha suaveolens Ehrh. (Lamiaceae) (MS), and Lavandula stoechas L. spp. luisieri (Lamiaceae) (LS) are all medicinal. Objective: To evaluate the antioxidant, antiproliferative and antimicrobial activities of plant extracts and quantify individual phenolics and zinc. Material and methods: Aerial part extracts were prepared with water (W), ethanol (E) and an 80% mixture (80EW). Antioxidant activity was measured with TAA, FRAP and RP methods. Phenolics were quantified with a HPLC. Zinc was quantified using voltammetry. Antibacterial activity (after 48 h) was tested using Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes. Antiproliferative activity (after 24 h) was tested using HEP G2 cells and fibroblasts. Results: Solvents influenced results; the best were E and 80EW. GP had the highest antioxidant activity (TAA and FRAP of 536.90mg AAE/g dw and 783.48mg TE/g dw, respectively). CM had the highest zinc concentration (37.21 mg/kg) and phenolic variety, with neochlorogenic acid as the most abundant (92.91 mg/100 g dw). LS was rich in rosmarinic acid (301.71 mg/100 g dw). GP and LS inhibited the most microorganisms: B. cereus, E. coli and S. aureus. GP also inhibited E. faecalis. CM had the lowest MIC: 5830 mu g/mL. The antibacterial activity is explained by the phenolics present. LS and CM showed the most significant anti-proliferative activity, which is explained by their zinc content. Conclusion: The most promising plants for further studies are CM, LS and GP.FCT, Fundacao para a Ciencia e a Tecnologia of Portugal [SFRH/BSA/139/2014

    Knowing your HIV/AIDS epidemic and tailoring an effective response: how did India do it?

    Get PDF
    Tremendous global efforts have been made to collect data on the HIV/AIDS epidemic. Yet, significant challenges remain for generating and analysing evidence to allocate resources efficiently and implement an effective AIDS response. India offers important lessons and a model for intelligent and integrated use of data on HIV/AIDS for an evidence-based response. Over the past 15 years, the number of data sources has expanded and the geographical unit of data generation, analysis and use for planning has shifted from the national to the state, district and now subdistrict level. The authors describe and critically analyse the evolution of data sets in India and how they have been utilised to better understand the epidemic, advance policy, and plan and implement an increasingly effective, well-targeted and decentralised national response to HIV and AIDS. The authors argue that India is an example of how ‘know your epidemic, know your response’ message can effectively be implemented at scale and presents important lessons to help other countries design their evidence generation systems
    corecore