111 research outputs found

    Closed String Field Theory with Dynamical D-brane

    Full text link
    We consider a closed string field theory with an arbitrary matter current as a source of the closed string field. We find that the source must satisfy a constraint equation as a consequence of the BRST invariance of the theory. We see that it corresponds to the covariant conservation law for the matter current, and the equation of motion together with this constraint equation determines the classical behavior of both the closed string field and the matter. We then consider the boundary state (D-brane) as an example of a source. We see that the ordinary boundary state cannot be a source of the closed string field when the string coupling g turns on. By perturbative expansion, we derive a recursion relation which represents the bulk backreaction and the D-brane recoil. We also make a comment on the rolling tachyon boundary state.Comment: 30 pages, LaTeX2e, no figures. Typos are correcte

    Numerical loop quantum cosmology: an overview

    Get PDF
    A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and Quantum Gravity special issue on Non-Astrophysical Numerical Relativit

    Dark Matter Signals from Cascade Annihilations

    Full text link
    A leading interpretation of the electron/positron excesses seen by PAMELA and ATIC is dark matter annihilation in the galactic halo. Depending on the annihilation channel, the electron/positron signal could be accompanied by a galactic gamma ray or neutrino flux, and the non-detection of such fluxes constrains the couplings and halo properties of dark matter. In this paper, we study the interplay of electron data with gamma ray and neutrino constraints in the context of cascade annihilation models, where dark matter annihilates into light degrees of freedom which in turn decay into leptons in one or more steps. Electron and muon cascades give a reasonable fit to the PAMELA and ATIC data. Compared to direct annihilation, cascade annihilations can soften gamma ray constraints from final state radiation by an order of magnitude. However, if dark matter annihilates primarily into muons, the neutrino constraints are robust regardless of the number of cascade decay steps. We also examine the electron data and gamma ray/neutrino constraints on the recently proposed "axion portal" scenario.Comment: 36 pages, 11 figures, 7 tables; references adde

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    New Approaches to Enforcement and Compliance with Labour Regulatory Standards: The Case of Ontario, Canada

    Full text link

    A Natural Supersymmetric Model with MeV Dark Matter

    Full text link
    It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this letter, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (\sim 10510^{-5}) effective couplings between dark matter and the Standard Model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru

    No Weight for “Due Weight”? A Children’s Autonomy Principle in Best Interest Proceedings

    Get PDF
    Article 12 of the un Convention on the Rights of the Child (crc) stipulates that children should have their views accorded due weight in accordance with age and maturity, including in proceedings affecting them. Yet there is no accepted understanding as to how to weigh children’s views, and it is associated strongly with the indeterminate notion of “competence”. In this article, case law and empirical research is drawn upon to argue that the concept of weighing their views has been an obstacle to children’s rights, preventing influence on outcomes for children in proceedings in which their best interests are determined. Younger children and those whose wishes incline against the prevailing orthodoxy (they may resist contact with a parent, for example) particularly lose out. Children’s views appear only to be given “significant weight” if the judge agrees with them anyway. As it is the notion of autonomy which is prioritised in areas such as medical and disability law and parents’ rights, it is proposed in this article that a children’s autonomy principle is adopted in proceedings – in legal decisions in which the best interest of the child is the primary consideration, children should get to choose, if they wish, how they are involved and the outcome, unless it is likely that significant harm will arise from their wishes. They should also have “autonomy support” to assist them in proceedings. This would likely ensure greater influence for children and require more transparent decision-making by adults.</jats:p

    The Effectiveness of Legal Safeguards in Jurisdictions that Allow Assisted Dying

    Full text link
    corecore