99 research outputs found
Interference of overlapping insect vibratory communication signals: an Eushistus heros Model.
Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros , produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros cmmunicate with species and gender spe- cific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency dif- ference between signals by changing the frequency level and frequency modulation pattern of their calls
On the evolution of the tymbalian tymbal organ: Comment on “Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size” by Davranoglou et al. 2019
In ihrer kürzlich erschienenen Arbeit (Davranoglou et al. 2019) untersuchten die Autoren an lebenden Exemplaren von Agalmatium bilobium (Issidae) mit modernsten Methoden (microCT) die Interaktionen zwischen Muskulatur und bestimmten Anteilen des Exoskeletts zur Vibrationserzeugung und beschreiben deren biomechanische Grundlage. Auf der Basis des morphologischen Vergleichs mit Museumsmaterial von Vertretern der meisten Taxa der Fulgoromorpha (Spitzkopfzikaden) im Familienrang postulieren Davranoglou et al. (2019), ein „neues und bisher übersehenes“ Organ entdeckt zu haben, das sie als „snapping organ“ bezeichnen und als charakteristisch für die Fulgoromorpha (mit Ausnahme der Delphacidae) interpretieren. Wir sehen diese Ergebnisse aus folgenden Gründen kritisch: 1. In ihrer umfassenden Übersicht zu den vibrationserzeugenden Organen der Hemiptera stellten Wessel et al. (2014) die Hypothese auf, dass sich alle bisher bekannten Strukturen zur Schall- und Vibrationserzeugung auf ein Organ zurückführen lassen, das mit hoher Wahrscheinlichkeit bei der Stammart aller Hemipteren oberhalb der Sternorrhyncha vorhanden war, und eine Synapomorphie dieses Taxons, der sog. Tymbalia (Wessel et al. 2014), darstellt. Da aufgrund der morphologischen Disparität des Organs in den einzelnen Taxa die Homologieverhältnisse schwierig zu beurteilen sind, stellten Wessel et al. (2014) Kriterien für das „Tymbal der Tymbalia“ auf. Das sogenannte „snapping organ“ erfüllt alle Kriterien dieses Tymbal-Organes. Die Einführung eines neuen Begriffes für eine bestimmte Struktur in einer langen und komplexen Kette evolutionärer Transformationen ist daher unnötig, wenn nicht sogar irreführend. Wir empfehlen daher dringend, in zukünftigen Arbeiten den Begriff „tymbalian tymbal organ with a snapping mechanism“ zu verwenden. 2. Die Grundannahme von Davranoglou et al. (2019), dass – im Gegensatz zum neu entdeckten „snapping organ“ der Fulgoromorpha – allen Cicadomorpha ein „tymbal-ähnliches Or-gan“ gemeinsam sei, ist zu stark vereinfacht und vernachlässigt die enorme Vielfalt der Ausprägungen des Tymbals bei Nicht-Singzikaden innerhalb der Cicadomorpha. In Anbetracht der verfügbaren Studien scheint es daher zweifelhaft, dass sich die vibrationserzeugenden Strukturen dreimal unabhängig voneinander entwickelt haben sollen, wie es die phylogenetische Interpretation bei Davranoglou et al. (2019: Abb. 3) suggeriert
DIVERSITY OF THE SOUTHERN GREEN STINK BUG NEZARA VIRIDULA (L.) (HETEROPTERA: PENTATOMIDAE)
The southern green stink bug Nezara viridula (L.) (Heteroptera: Pentatomidae) is a global pest of considerable
ecological, agricultural and economical interest. The ancestral home of this species is supposed to be Africa and/or
Mediterranean and presumably it was spread worldwide during the last two centuries with human trade and
agriculture. Bugs found today on different continents do not differ morphologically, however there are substantial
differences in their mating behaviour. We used horizontal starch gel electrophoresis to determine the suitability of
biochemical markers for assessment of genetic variation between geographically isolated populations of N.
viridula. The initial survey of populations from Slovenia, France, French West Indies and Brazil resulted in the
resolution of polymorphic banding patterns within the following enzyme systems: GPI, IDH, MDH, ME, MPI and
PGM. Results indicate there are consistent differences among tested populations
Substrate-borne vibrations disrupt the mating behaviors of the neotropical brown stink bug, Euschistus heros: implications for pest management.
Made available in DSpace on 2018-05-24T00:52:47Z (GMT). No. of bitstreams: 1
10.1007s1034001809615.pdf: 942088 bytes, checksum: 49c966694e10345b8560655a6a4dc7c8 (MD5)
Previous issue date: 2018-05-23bitstream/item/177582/1/10.1007-s10340-018-0961-5.pd
Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)
During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition
Ecoacoustics and multispecies semiosis: naming, semantics, semiotic characteristics, and competencies
Biosemiotics to date has focused on the exchange of signals between organisms, in line with bioacoustics; consideration of the wider acoustic environment as a semiotic medium is under-developed. The nascent discipline of ecoacoustics, that investigates the role of environmental sound in ecological processes and dynamics, fills this gap. In this paper we introduce key ecoacoustic terminology and concepts in order to highlight the value of ecoacoustics as a discipline in which to conceptualise and study intra- and interspecies semiosis. We stress the inherently subjective nature of all sensory scapes (vivo-, land-, vibro- and soundscapes) and propose that they should always bear an organismic attribution. Key terms to describe the sources (geophony, biophony, anthropophony, technophony) and scales (sonotopes, soundtopes, sonotones) of soundscapes are described. We introduce epithets for soundscapes to point to the degree to which the global environment is implicated in semiosis (latent, sensed and interpreted soundscapes); terms for describing key ecological structures and processes (acoustic community, acoustic habitat, ecoacoustic events) and examples of ecoacoustic events (choruses and noise) are described. The acoustic eco-field is recognized as the semiotic model that enables soniferous species to intercept core resources like food, safety and roosting places. We note that whilst ecoacoustics to date has focused on the critical task of the development of metrics for application in conservation and biodiversity assessment, these can be enriched by advancing conceptual and theoretical foundations. Finally, the mutual value of integrating ecoacoustic and biosemiotics perspectives is considered
Secondary spectral components of substrate-borne vibrational signals affect male preference
Animal sexual signals contain information about both compatibility and quality of the signaller, but combined with influence of the signalling medium, the complexity of mate selection makes it difficult to separate different components of this process. We approached the problem of teasing apart different functions of sexual signals by using the planthopper Hyalesthes obsoletus, which uses unimodal vibrational communication, as a model. Vibrational signals are known to encode information about identity in their temporal pattern, while a useful cue for quality may reside in their spectral properties. In this study, we demonstrate a connection between spectral properties and attractiveness of female signals based on male behavioural response to signal playback. Artificially increasing the amplitude of high-frequency components increases signal attractiveness and vice versa, which indicates that spectral properties could function as an index of quality. Presence of high-frequency spectral components might indicate a larger or healthier individual, but direct connection with female fitness is not yet clear. In addition, we found that H. obsoletus males are able to exploit female pulses as directional cues and can discriminate between female signals of different attractiveness coming from spatially separated sources
Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song
We tested the hypothesis that male southern green stink bugs, Nezara viridula (L.), use substrate-borne songs to locate females. We recorded the responses of bugs on plants to the vibrations caused by a prerecorded female song and by an artificial sound. The female song caused males to walk, to respond with the calling and courtship songs and to approach the source of the song with characteristic search behaviour at junctions between branches on the plants. At a junction, a searching male stopped, stretched his legs and antennae and compared the vibratory signals on the two branches, with different combinations of legs and antennae. The males then left the junction and approached the source of the vibration. Males located the loudspeaker significantly more frequently in the presence than in the absence of vibratory stimuli on cyperus, Cyperus alternifolius L., and beans, Phaseolus vulgaris L. Vibrational directionality was also elicited by artificial pure tones whose spectral and temporal parameters were similar to those of natural female song. Females showed no reaction to vibratory stimulation and no vibrational directionality. We discuss possible mechanisms underlying vibrational directionality in the light of expected signal changes during transmission through plants. (C) 1999 The Association for the study of Animal Behaviour
Short range communication in Drosophila suzukii
We describe a short range mating behaviour of Drosophila suzukii with particular emphasis on the sound communication. A double approach for signal recording was adopted: a prepolarized microphone for air-borne signals and a laser vibrometer for substrate-borne signals. Males and females were inserted into a recording arena and audio/video was recorded throughout the mating process. The analyses of collected data revealed the common use of several acoustic signals by males from the first approach to the final copula. Some of these signals are clearly substrate-borne and are produced by abdominal vibrations. During the courtship males combine wing exposure with sound emission so that visual and acoustic cues work together to increase female acceptance. No female signals were ever detected
- …